Skip to main content

Abstract

The current scenarios for the future of energy seem to suffer a kind of schizophrenia. Some experts do not venture into an uncertain future and prefer to stick to a business-as-usual scenario focused on fossil fuels like they are going to be used in the future with no limitations at all. According to this scenario fossil fuels are not a commodity bound for depletion in the next decades, but they are going to be used forever, and no “energy transition” is in sight for the foreseeable future. Some other experts depict a completely different scenario, where solar energy and electric vehicle are “disruptive” technologies that in a matter of few years will send out of the market both the power utilities like we intend them nowadays and internal combustion engine cars, determining the end of oil-age and nuclear-age. In our opinion both scenarios have some strengths but suffer of many weaknesses, and at the end of the day the “energy transition” from oil-age to renewable-age will happen during this century but probably it will not be so fast as some predict. The paper describes the strengths and weaknesses of the two scenarios and presents a feasible vision for the foreseeable future of world energy. Eventually, current research efforts under way at DIISM-UNIVPM will be presented, starting from the reasons why the topics are substantial for the energy transition to continue with the results expected from these researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC (2018) Global warming of 1.5 °C: an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Available via DIALOG. http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf. Accessed October 20, 2018

  2. Pope Francis (2015) Encyclical Laudato sì, Libreria Editrice Vaticana, Città del Vaticano. Available via DIALOG. http://w2.vatican.va/content/dam/francesco/pdf/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si_it.pdf. Accessed October 21, 2018

  3. Von Weiszacker EU, Wijkman A (2018) Come on!: Capitalism, short-termism. Population and the destruction of the planet. Springer Science + Business Media, New York. ISBN 978-1-4939-7418-4

    Book  Google Scholar 

  4. Smil V (2007) Energy in nature and society, MIT Press, Cambridge, Mass., p. 29, ISBN: 978-02-62693-56-1

    Google Scholar 

  5. Jacobson MZ et al, 100% Clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world, Joule, 1(1):108–121, doi:http://dx.doi.org/10.1016/j.joule.2017.07.005

    Article  Google Scholar 

  6. Seba T (2014). Clean disruption of energy and transportation. Lightning Source Inc., ISBN: 978-06-92210-53-6

    Google Scholar 

  7. Arbib J, Seba T (2017) Rethinking transportation: the disruption of transportation and the collapse of the internal-combustion vehicle and oil industries. RethinkX. ISBN: 978-09-99401-60-6

    Google Scholar 

  8. Battaglia F (2007) L’illusione dell’energia dal sole (in Italian), 21mo Secolo, Milan. ISBN: 978-88-87731-34-7

    Google Scholar 

  9. MacKay DJC (2009). Sustainable energy-whitout the hot air, UIT Cambridge, ISBN: 978-09-54459-23-3

    Google Scholar 

  10. Smil V (2017) Oil. Oneworld publications, London. ISBN 978-1-78607-286-3

    Google Scholar 

  11. Dagospia (2018) Pompa funebre. Estratto dall’articolo di Luigi Grassia per LaStampa (in Italian), October 11, 2018. Available via DIALOG. http://www.dagospia.com/cerca?s=pompa+funebre. Accessed November 16, 2018

  12. Beckman K (2018) IPCC climate alarm: what next for energy? Energy post weekly, October 16, 2018. Available via DIALOG. https://energypostweekly.eu/ipcc-climate-alarm-what-next-for-energy-oil-industry-dont-call-us-well-call-you/. Accessed November 16, 2018

  13. Bradley S (2018). What is the future of coal? energypost.eu, October 10, 2018. Available via DIALOG. https://energypost.eu/what-is-the-future-of-coal/. Accessed November 16, 2018

  14. Hubbert MK (1956). Nuclear energy and the fossil fuels. Presented at the Spring meeting of the Southern Division of American Petroleum Institute, San Antonio, TX, March 1956. Available via DIALOG. http://www.hubbertpeak.com/Hubbert/1956/1956.pdf. Accessed November 16, 2018

  15. Bardi U (2011) La Terra svuotata (in Italian). Editori Riuniti University Press, Rome. ISBN 978-88-6473-067-7

    Google Scholar 

  16. Williams-Derry C, Hipple K and Sanzillo T (2018) Energy market update: Red Flag on U.S. Fracking. Institute for Energy Economics and Financial Analysis and Sightline Institute, October 2018. Available via DIALOG. http://ieefa.org/wp-content/uploads/2018/10/Red-Flags-on-U.S.-Fracking_October-2018.pdf. Accessed November 16, 2018

  17. Cunningham N (2018) US shale has a glaring problem. oilprice.com. October 21, 2018. Available via DIALOG. https://oilprice.com/Energy/Energy-General/US-Shale-Has-A-Glaring-Problem.html. Accessed November 16, 2018

  18. Smil V (2015) Natural gas. Fuel for the 21st Century. John Wiley & Sons, Chichester. ISBN: 978-1-11901-286-3

    Google Scholar 

  19. Deign L (2018) What role for gas in Europe’s 2050 energy system? energypost.eu, September 20, 2018. Available via DIALOG. http://energypost.eu/what-role-for-gas-in-europes-2050-energy-system/. Accessed November 16, 2018

  20. European Union (2012) Energy roadmap 2050. ISBN: 978-72-79-21798-2 Available via DIALOG. https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf. Accessed November 16, 2018

  21. European Commission (2018) 2050 Energy Strategy. Available via DIALOG. https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2050-energy-strategy. Accessed November 21, 2018

  22. Trinomics, (2018) Trans-European gas infrastructure in the light of the 2050 decarbonisation targets. Final report. September 24, 2018. Available via DIALOG. http://trinomics.eu/wp-content/uploads/2018/11/Final-gas-infrastructure.pdf. Accessed November 21, 2018

  23. Bardi U (2017) Viaggiare elettrico (in Italian). Luce edizioni, Massa. ISBN 978-88-97556-24-4

    Google Scholar 

  24. Arteconi A, Brandoni C, Evangelista D, Polonara F (2010) Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Appl Energy 87:2005–2013. https://doi.org/10.1016/j.apenergy.2009.11.012

    Article  Google Scholar 

  25. Rifkin J (2002) The hydrogen economy. Penguin, New York. ISBN 978-1-58542-193-0

    Google Scholar 

  26. Beckman K (2018) The age of renewables is here-I-renewables make the grade in price performance and reliability. Energy post weekly, September 18, 2018. Available via DIALOG. https://energypostweekly.eu/the-age-of-renewables-is-here-i-renewables-make-the-grade-in-price-performance-and-reliability/. Accessed November 17, 2018

  27. Motyka M, Slaughter A and Amon C (2018). Global renewable energy trends. Solar and wind move from mainstream to preferred. Deloitte Insights. Available via DIALOG. https://www2.deloitte.com/insights/us/en/industry/power-and-utilities/global-renewable-energy-trends.html. Accessed November 17, 2018

  28. International Energy Agency (2014). Technology Roadmap. Energy storage. Available via DIALOG. https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf. Accessed November 17, 2018

  29. EASE-EERA (2018). European Energy Storage Technology Development towards 2030—Update. Available via DIALOG. https://www.eera-set.eu/wp-content/uploads/. Accessed November 17, 2018

  30. Bloomberg (2018). Energy Storage is a $620 Billion Investment Opportunity to 2040. Bloomberg NEF, November 6, 2018. Available via DIALOG. https://about.bnef.com/blog/energy-storage-620-billion-investment-opportunity-2040/. Accessed November 17, 2018

  31. Beckman K (2018). The age of renewables is here-II-More deals, more zero-subsidy, more PPAs, more grid integration. Energy post weekly, September 18, 2018. Available via DIALOG. https://energypostweekly.eu/the-age-of-renewables-is-here-ii-more-deals-more-zero-subsidy-more-ppas-more-grid-integration/. Accessed November 17, 2018

  32. The World Bank (2017) World Bank Group Announcements at One Planet Summit. Press release, December 1, 2017. Available via DIALOG. http://www.worldbank.org/en/news/press-release/2017/12/12/world-bank-group-announcements-at-one-planet-summit. Accessed November 18, 2018

  33. TCFD (2018) Task Force on Climate-related Financial Disclosures-2018 Status Report. September 2018. Available via DIALOG. https://www.fsb-tcfd.org/wp-content/uploads/2018/08/FINAL-2018-TCFD-Status-Report-092518.pdf. Accessed November 17, 2018

  34. Espinosa J, Raval A (2018) Blackstone launches Africa-Middle East power venture. Financial Times, October 8, 2018. Available via DIALOG. https://www.ft.com/content/e9097070-c9ff-11e8-b276-b9069bde0956. Accessed November 18, 2018

  35. LAZARD (2018) Lazard’s Levelized Cost of Energy Analysis-Version 12.0. November 2018. Available via DIALOG. https://www.lazard.com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal.pdf. Accessed November 17, 2018

  36. Kavlak G, McNerney J, Trancik JE (2018) Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123:700–710. https://doi.org/10.1016/j.enpol.2018.08.015

    Article  Google Scholar 

  37. Brebbia C, Magaril E, Passerini G, Polonara F (eds) (2014) Energy production and Management in the 21st Century II. WIT Press, Southampton (UK). ISBN 978-1-78466-107-6

    Google Scholar 

  38. International Energy Agency (2018). World Energy Outlook 2018, November 13, 2018. Available via DIALOG. https://webstore.iea.org/world-energy-outlook-2018. Accessed November 18, 2018

  39. National Renewable Energy Laboratory, (2018). NWTC Information Portal (FAST). Available via DIALOG. https://nwtc.nrel.gov/FAST. Last modified January 4, 2018; Accessed November 21, 2018

  40. D’Alessandro V, Montelpare S, Ricci R (2016) Detached-eddy simulations of the flow over a cylinder at Re = 3900 using OpenFOAM. Comput Fluids 136:152–169. https://doi.org/10.1016/j.compuid.2016.05.031

    Article  Google Scholar 

  41. D’Alessandro V, Montelpare S, Ricci R, Zoppi A (2017) Numerical modeling of the flow over wind turbine airfoils by means of Spalart-Allmaras local correlation based transition model. Energy 130:402–419. https://doi.org/10.1016/j.energy.2017.04.134

    Article  Google Scholar 

  42. D’Alessandro V, Binci L, Montelpare S, Ricci R (2018) On the development of OpenFOAM solvers based on explicit and implicit high-order Runge-Kutta schemes for incompressible flows with heat transfer. Comput Phys Commun 222:14–30. https://doi.org/10.1016/j.cpc.2017.09.009

    Article  Google Scholar 

  43. Energy Alabama (2017) The Duck Curve: what is it and what does it mean? acse.org, May 29, 2017. Available via DIALOG. https://alcse.org/the-duck-curve-what-is-it-and-what-does-it-mean/. Accessed November 18, 2018

  44. Office of Electricity Delivery and Energy Reliability Smart Grid R&D Program (2011) DOE Microgrid Workshop Report. San Diego, California, August 30–31, 2011. Available via DIALOG. https://www.energy.gov/sites/prod/files/Microgrid%20Workshop%20Report%20August%202011.pdf. Accessed November 18, 2018

  45. Esposito F, Mancinelli E, Morichetti M, Passerini G and Rizza U (2018) A cogeneration power plant to integrate cold ironing and district heating and cooling. Int J Energy Prod Manag 3(3):214–225, https://doi.org/10.2495/eq-v3-n3-214-225

    Article  Google Scholar 

  46. Lund H, Østergaard PA, Connolly D, VadMathiesen B (2017) Smart energy and smart energy systems. Energy 137:556–565. https://doi.org/10.1016/j.energy.2017.05.123

    Article  Google Scholar 

  47. Comodi G, Giantomassi A, Severini M, Squartini S, Ferracuti F, Fonti A, Nardi Cesarini D, Morodo M, Polonara F (2015) Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies. Appl Energy 137:854–866. https://doi.org/10.1016/j.apenergy.2014.07.068

    Article  Google Scholar 

  48. Arteconi A, Ciarrocchi E, Pan Q, Carducci F, Comodi G, Polonara F, Wang R (2017) Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads. Appl Energy 185:1984–1993. https://doi.org/10.1016/j.apenergy.2016.01.025

    Article  Google Scholar 

  49. Comodi G, Lorenzetti M, Salvi D, Arteconi A (2017) Criticalities of district heating in Southern Europe: Lesson learned from a CHP-DH in Central Italy. Appl Therm Eng 112:649–659. https://doi.org/10.1016/j.applthermaleng.2016.09.149

    Article  Google Scholar 

  50. Comodi G, Carducci F, Sze JY, Balamurugan N, Romagnoli A (2017) Storing energy for cooling demand management in tropical climates: a techno-economic comparison between different energy storage technologies. Energy 121:676–694. https://doi.org/10.1016/j.energy.2017.01.038

    Article  Google Scholar 

  51. Comodi G, Carducci F, Balamurugan N, Romagnoli A (2016) Application of cold thermal energy storage (CTES) for building demand management in hot climates. Appl Therm Eng 103:1186–1195. https://doi.org/10.1016/j.applthermaleng.2016.02.035

    Article  Google Scholar 

  52. Borri E, Tafone A, Romagnoli A, Comodi G (2017) A preliminary study on the optimal configuration and operating range of a “microgrid scale” air liquefaction plant for Liquid Air Energy Storage. Energy Convers Manag 143:275–285. https://doi.org/10.1016/j.enconman.2017.03.079

    Article  Google Scholar 

  53. Tafone A, Borri E, Comodi G, van denBroek M, Romagnoli A (2018) Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller. Appl Energy 228:1810–1821. https://doi.org/10.1016/j.apenergy.2018.06.133

    Article  Google Scholar 

  54. Comodi G, Caresana F, Salvi D, Pelagalli L, Lorenzetti M (2016) Local promotion of electric mobility in cities: Guidelines and real application case in Italy. Energy 95:494–503. https://doi.org/10.1016/j.energy.2015.12.038

    Article  Google Scholar 

  55. Gellings C (1985) The concept of demand-side management for electric utilities. Proc IEEE 73(10):1468–1470. https://doi.org/10.1109/PROC.1985.13318

    Article  Google Scholar 

  56. Strbac G (2008) Demand side management: Benefits and challenges. Energy Policy 36(12):4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030

    Article  Google Scholar 

  57. Warren P (2014) A review of demand-side management policy in the UK. Renew Sustain Energy Rev 29:941–951. https://doi.org/10.1016/j.rser.2013.09.009

    Article  Google Scholar 

  58. Pina A, Silva C, Ferrao P (2012) The impact of demand side management strategies in the penetration of renewable electricity. Energy 41(1):128–137. https://doi.org/10.1016/j.energy.2011.06.013

    Article  Google Scholar 

  59. EU (European Union), 2018. Energy efficiency—Buildings. Available via DIALOG. https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings. Accessed November 18, 2018

  60. Arteconi A, Hewitt NJ, Polonara F (2012) State of the art of thermal storage for demand side management. Appl Energy 93:371–389. https://doi.org/10.1016/j.apenergy.2011.12.045

    Article  Google Scholar 

  61. Arteconi A, Hewitt NJ, Polonara F (2013) Domestic Demand-Side Management (DSM): Role of Heat Pumps and Thermal Energy Storage (TES) systems. Appl Therm Eng 51:155–165. https://doi.org/10.1016/j.applthermaleng.2012.09.023

    Article  Google Scholar 

  62. Arteconi A, Costola D, Hoes P, Hensen JLM (2014) Analysis of control strategies for thermally activated building systems under demand side management mechanisms. Energy Build 80:384–393. https://doi.org/10.1016/j.enbuild.2014.05.053

    Article  Google Scholar 

  63. Arteconi A, Polonara F (2017) Demand side management in refrigeration applications. Int J Heat Technol 35(1):S58–S63. https://doi.org/10.18280/ijht.35Sp0108

    Article  Google Scholar 

  64. Arteconi A, Polonara F (2018) Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings. Energies 11(7):1846. https://doi.org/10.3390/en11071846

    Article  Google Scholar 

  65. Patteeuw D, Bruninx K, Arteconi A, Delarue E, D’haeseleer W, Helsen L (2015) Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems. Appl Energy 151:306–319. https://doi.org/10.1016/j.apenergy.2015.04.014

    Article  Google Scholar 

  66. Patteeuw D, Henze GP, Arteconi A, Corbin CD, Helsen L (2018) Clustering a building stock towards representative buildings in the context of air-conditioning electricity demand flexibility. J Build Perform Simul, published online, https://doi.org/10.1080/19401493.2018.1470202

    Article  Google Scholar 

  67. Arteconi A, Patteeuw D, Bruninx K, Delarue E, D’haeseleer W, Helsen L (2016) Active demand response with electric heating systems: impact of market penetration. Appl Energy 177:636–648. https://doi.org/10.1016/j.apenergy.2016.05.146

    Article  Google Scholar 

  68. Adefarati T, Bansal RC (2017) Reliability assessment of distribution system with the integration of renewable distributed generation. Appl Energy 185:158–171. https://doi.org/10.1016/j.apenergy.2016.10.087

    Article  Google Scholar 

  69. Li G, Bie Z, Kou Y, Jiang J, Bettinelli M (2016) Reliability evaluation of integrated energy systems based on smart agent communication. Appl Energy 167:397–406. https://doi.org/10.1016/j.apenergy.2015.11.033

    Article  Google Scholar 

  70. Shariatkhah MH, Haghifam MR, Parsa-Moghaddam M, Siano P (2015) Modeling the reliability of multi-carrier energy systems considering dynamic behavior of thermal loads. Energy Build 103:375–383. https://doi.org/10.1016/j.enbuild.2015.06.001

    Article  Google Scholar 

  71. Borowitzka MA, Moheimani NR (eds) (2013) Algae for Biofuels and Energy. Springer, Netherlands. ISBN 978-94-007-5478-2

    Google Scholar 

  72. Di Nicola G, Pacetti M, Polonara F, Santori G andStryjek R (2008) Development and optimization of a method for analyzing biodiesel mixtures with non aqueous reversed phase liquid chromatography. J Chromatogr A, 1190:120–126, https://doi.org/10.1016/j.chroma.2008.02.085

    Article  Google Scholar 

  73. Santori G, Di Nicola G, Moglie M and Polonara F (2012) A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl Energy 92:109–132, https://doi.org/10.1016/j.apenergy.2011.10.031

    Article  Google Scholar 

  74. Santori G, Franciolini M, Di Nicola G, Polonara F, Brandani S, Stryjek R (2014) An algorithm for the regression of the UNIQUAC interaction parameters in liquid-liquid equilibrium for single- and multi-temperature experimental data. Fluid Phase Equilibria, pp 79–85, https://doi.org/10.1016/j.fluid.2014.04.014

    Article  Google Scholar 

  75. Rapier R (2018) The Death of Algal Biofuels, oilprice.com. October 27, 2018. Available via DIALOG. https://oilprice.com/Alternative-Energy/Biofuels/The-Death-Of-Algal-Biofuel.html. Accessed November 18, 2018

  76. European Political Strategy Center (2018) 10 Trends Reshaping Climate and Energy. Available via DIALOG. https://ec.europa.eu/epsc/publications/other-publications/10-trends-reshaping-climate-and-energy_en. Accessed December 8, 2018

  77. Muttitt G (2018) The IEA Comes Up Short on Climate (Again). Oil Change International, November 12, 2018. Available via DIALOG. http://priceofoil.org/2018/11/12/business-as-usual-iea-climate/. Accessed November 18, 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Polonara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arteconi, A. et al. (2019). Energy Scenarios for the Future of Mankind. In: Longhi, S., Monteriù, A., Freddi, A., Frontoni, E., Germani, M., Revel, G. (eds) The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-32762-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32762-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32761-3

  • Online ISBN: 978-3-030-32762-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics