Skip to main content

Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminary Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11850))

Abstract

Functional avoidance radiation therapy for lung cancer patients aims to limit dose delivery to highly functional lung. However, the clinical functional imaging suffers from many shortcomings, including the need of exogenous contrasts, longer processing time, etc. In this study, we present a new approach to derive the lung functional images, using a deep convolutional neural network to learn and exploit the underlying functional information in the CT image and generate functional perfusion image. In this study, 99mTc MAA SPECT/CT scans of 30 lung cancer patients were retrospectively analyzed. The CNN model was trained using randomly selected dataset of 25 patients and tested using the remaining 5 subjects. Our study showed that it is feasible to derive perfusion images from CT image. Using the deep neural network with discrete labels, the main defect regions can be predicted. This technique holds the promise to provide lung function images for image guided functional lung avoidance radiation therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay, J., et al.: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144(8), 1941–1953 (2019)

    Google Scholar 

  2. Midha, A., Dearden, S., McCormack, R.: EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 5(9), 2892–2911 (2015)

    Google Scholar 

  3. Bradley, J.D., et al.: Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16(2), 187–199 (2015)

    Article  Google Scholar 

  4. Lee, E., et al.: Functional lung avoidance and response-adaptive escalation (FLARE) RT: Multimodality plan dosimetry of a precision radiation oncology strategy. Med. Phys. 44(7), 3418–3429 (2017)

    Article  Google Scholar 

  5. Madani, I., De Ruyck, K., Goeminne, H., De Neve, W., Thierens, H., Van Meerbeeck, J.: Predicting risk of radiation-induced lung injury. J. Thorac. Oncol. 2(9), 864–874 (2007)

    Article  Google Scholar 

  6. Hoover, D.A., et al.: Functional lung avoidance for individualized radiotherapy (FLAIR): study protocol for a randomized, double-blind clinical trial. BMC Cancer 14, 934 (2014)

    Article  Google Scholar 

  7. Harders, S.W., Balyasnikowa, S., Fischer, B.M.: Functional imaging in lung cancer. Clin. Physiol. Funct. Imaging 34(5), 340–355 (2014)

    Article  Google Scholar 

  8. Suga, K.: Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-Technegas. Ann. Nucl. Med. 16(5), 303–310 (2002). (in English)

    Article  Google Scholar 

  9. Callahan, J., et al.: High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT. Eur. J. Nucl. Med. Mol. Imaging 41(2), 343–349 (2014)

    Article  MathSciNet  Google Scholar 

  10. Mathew, L., et al.: Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer. Acad. Radiol. 19(12), 1546–1553 (2012)

    Article  Google Scholar 

  11. Kipritidis, J., et al.: The VAMPIRE challenge: a multi-institutional validation study of CT ventilation imaging. Med. Phys. 46(3), 1198–1217 (2019). (in English)

    Article  Google Scholar 

  12. Gefter, W.B., Hatabu, H.: Functional lung imaging: emerging methods to visualize regional pulmonary physiology. Acad. Radiol. 10(10), 1085–1089 (2003)

    Article  Google Scholar 

  13. Kipritidis, J., et al.: Estimating lung ventilation directly from 4D CT Hounsfield unit values. Med. Phys. 43(1), 33 (2016)

    Article  Google Scholar 

  14. Chen, H., et al.: Low-Dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  15. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  16. Jin, C.B., et al.: Deep CT to MR synthesis using paired and unpaired data. Sensors 19(10), 2361 (2019). (in English)

    Article  Google Scholar 

  17. Leung, K., et al.: A deep-learning-based fully automated segmentation approach to delineate tumors in FDG-PET images of patients with lung cancer. J. Nucl. Med. 59, 323 (2018). (in English)

    Google Scholar 

  18. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). (in English)

    Article  Google Scholar 

  19. Zhong, Y., et al.: Technical note: deriving ventilation imaging from 4DCT by deep convolutional neural network. Med. Phys. 46(5), 2323–2329 (2019). (in English)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, G., Ho, W.Y., Qin, J., Cai, J. (2019). Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminary Study. In: Nguyen, D., Xing, L., Jiang, S. (eds) Artificial Intelligence in Radiation Therapy. AIRT 2019. Lecture Notes in Computer Science(), vol 11850. Springer, Cham. https://doi.org/10.1007/978-3-030-32486-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32486-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32485-8

  • Online ISBN: 978-3-030-32486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics