Skip to main content

Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer

  • Chapter
  • First Online:
Textbook of Oral Cancer

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

Abstract

A very wide range of homeostatic processes is disturbed in cancer. These are visible at patient, lesion, tissue, and cellular levels across all body systems, including in all body fluids, and are increasingly understood at molecular level, providing many opportunities to research molecular therapeutic targets. This chapter introduces and contextualises most of the processes currently understood as of importance to the biology of cancer: many of these understandings are comparatively new; some are speculative. Astonishing advances in technology enable vast amounts of information from a single patient – even a single cell, posing challenges in interpretation of such “big data”. Nevertheless, it is upon speculations around the meaning of this information, and the application of strict scientific method, that progress in cancer prevention and management depend. Prudence is required not to overplay the clinical applicability of much current research.

Some contents of this Chapter are reused under licence 4636580828816. These are based on previously published work in “Squamous Cell Carcinoma- Molecular Therapeutic Targets” published by Springer Nature

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernier J, editor. Head and neck cancer. Multimodality management. 2nd ed. Berlin: Springer; 2016.

    Google Scholar 

  2. Weinberg RA. The biology of cancer. 2nd ed. Garland Press: New York, NY; 2013.

    Google Scholar 

  3. Mendelsohn J, et al., editors. The molecular basis of cancer. 4th ed: Saunders; 2015.

    Google Scholar 

  4. Pelengaris S, Khan M, editors. The molecular biology of cancer: a bridge from bench to bedside. 2nd ed: Wiley-Blackwell; 2013.

    Google Scholar 

  5. Shah JP, Johnson NW. Oral and oropharyngeal cancer: CRC Press; 2018.

    Google Scholar 

  6. https:// icgc.org/.

  7. The Cancer Genome Atlas (TCGA), http://www.genome.gov/17516564.

  8. The Welcome Trust Sanger Institute, https://www.sanger.ac.uk/ research/ projects/ cancergenome/.

  9. https://www.genome.gov/27560263/2015-news-release-nihfunded-study-uncovers-range-of-molecular-alterations-in-head-and-neck-cancers-new-potential-drug-targets/.

  10. Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  Google Scholar 

  11. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  PubMed  Google Scholar 

  12. http://www.cancer.org/cancer/cancercauses/geneticsandcancer/genesandcancer/genes-and-cancer- oncogenes-tumor-suppressor-genes. Accessed 4 Jan 2015.

  13. Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B. Only three driver genemutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci U S A. 2015;112(1):118–23.

    Article  PubMed  Google Scholar 

  14. Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355(6331):1330–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, Prime SS. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis. 2017;38(1):76–85.

    Article  PubMed  Google Scholar 

  16. Gao P, Li C, Chang Z, Wang X, Ming XM. Carcinoma associated fibroblasts derived from oral squamous cell carcinoma promote lymphangiogenesis via c-Met/PI3K/AKT in vitro. Oncol Lett. 2018;15(1):331–7.

    Google Scholar 

  17. Gonzalez-Moles MA. Cancer stem cells – biopathology with reference to head and neck cancers. In: Warnakulasuriya S, Khan Z, editors. Squamous cell carcinoma: molecular therapeutic targets. Berlin: Springer; 2017. p. 37–58.

    Chapter  Google Scholar 

  18. Tonge PD, Corso AJ, Monetti C, Hussein SM, Puri MC, Michael IP, et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature. 2014;516(7530):192–7.

    Article  PubMed  Google Scholar 

  19. http://www.stemformatics.org.

  20. Mackenzie IC. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature. 1970;226:653–5.

    Article  PubMed  Google Scholar 

  21. Mackenzie IC, Zimmerman K, Peterson L. The pattern of cellular organization of human epidermis. J Invest Dermatol. 1981;76(6):459–61.

    Article  PubMed  Google Scholar 

  22. Potten CS. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 1974;7:77–88.

    PubMed  Google Scholar 

  23. Humphries A, Wright NA. Colonic crypt organization and tumorigenesis. Rev: Nat Rev Cancer. 2008;8(6):415–24.

    PubMed  Google Scholar 

  24. Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347(6217):78–81.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cairns J. Mutation selection and the natural history of cancer. Nature (London). 1975;255:197–200.

    Article  Google Scholar 

  26. Cairns J. Somatic stem cells and the kinetic sofmutagenesis and carcinogenesis. PNAS. 2002;99:10567–70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Antoniou A, Hébrant A, Dom G, Dumont JE, Maenhaut C. Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property? Cell Cycle. 2013;12(24):3743–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43.

    Article  PubMed  Google Scholar 

  29. Qiao B, Johnson NW, Chen X, Li R, Tao Q, Gao J. Disclosure of a stem cell phenotype in an oral squamous cell carcinoma cell line induced by BMP-4 via an epithelial-mesenchymal transition. Oncol Rep. 2011;26(2):455–61.

    PubMed  Google Scholar 

  30. Shah A, Patel S, Pathak J, Swain N, Kumar S. The evolving concepts of cancer stem cells in head and neck squamous cell carcinoma. Sci World J. 2014;2014:842491. https://doi.org/10.1155/2014/842491. (eCollection2014).

    Article  Google Scholar 

  31. Xiao M, Liu L, Zhang S, Yang X, Wang Y. Cancer stem cell biomarkers for head and neck squamous cell carcinoma: a bioinformatic analysis. Oncol Rep. Published online on: October 8, 2018 https://doi.org/10.3892/or.2018.6771.

  32. http://www.promab.com/services/cancer-stem-cell/ identification-platform.

  33. Warnakulasuriya KA, MacDonald DG. Diurnal variation in labelling index in human buccal epithelium. Arch Oral Biol. 1993;38(12):1107–11.

    Article  PubMed  Google Scholar 

  34. Bullough WS, Laurence EB. Chalones and cancer: epidermal chalone and mitotic control in the V x 2 epidermal tumour. Nature. 1968;220:134–5.

    Article  PubMed  Google Scholar 

  35. Elgjo K, Reichelt KL. Chalones—from aqueous extracts to oligopeptides. Cell Cycle. 2004;3(9):1208.

    Article  PubMed  Google Scholar 

  36. Shaikh MH, Idris A, Johnson NW, Fallaha S, Clarke DTW, Martin D, et al. Aurora kinases are a novel therapeutic target for HPV-positive head and neck cancers. Oral Oncol. 2018;86:105–12.

    Article  PubMed  Google Scholar 

  37. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015. pii:S1044-579X(15) 00014-0.

    Google Scholar 

  38. Biddle A, Mackenzie IC. Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev. 2012. (Epub ahead of print).

    Google Scholar 

  39. http://www.sabiosciences.com/ /rt_pcr_product/HTML/PAHS-090A.html?utm_content= PO100614 +EMT+and+Cancer_int & utm_ campaign=PO100614+EMT&utm_source= iPost&utm_medium= em.

  40. Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol. 2010;37(3):663–8.

    PubMed  Google Scholar 

  41. Masui T, Ota I, Yook JI, Mikami S, Yane K, Yamanaka T, Hosoi H. Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. Int J Oncol. 2014;44(3):693–9.

    Article  PubMed  Google Scholar 

  42. Shigeishi H, Biddle A, Gammon L, Emich H, Rodini CO, Gemenetzidis E, Fazil B, Sugiyama M, Kamata N, Mackenzie IC. Maintenance of stem cell self-renewal in head and neck cancers requires actions of GSK3b influenced by CD44 and RHAMM. Stem Cells. 2013;31(10):2073–83.

    Article  PubMed  Google Scholar 

  43. Schramm HM. Should EMT of cancer cells be understood as epithelial-myeloid transition? J Cancer. 2014;5(2):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Larue L, Bellacosa I. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24:7443–54.

    Article  PubMed  Google Scholar 

  45. Evans AW, Johnson NW, Butcher RG. A quantitative cytochemical study of three oxidative enzymes during experimental oral carcinogenesis in the hamster. Br J Oral Surg. 1980;18(1):3–16.

    Article  PubMed  Google Scholar 

  46. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  Google Scholar 

  47. Warburg O. Revised Lindau lectures: the prime cause of cancer and prevention—Parts 1 & 2. In: Burk D, editor. Meeting of the nobel-laureates. Lindau, Lake Constance: K. Triltsch; 1969.

    Google Scholar 

  48. Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab. 2014;17(2):10.

    Article  Google Scholar 

  49. Sciacovelli M, Gaude E, Hilvo M, Frezza C. The metabolic alterations of cancer cells. Methods Enzymol. 2014;542:1–23.

    Article  PubMed  Google Scholar 

  50. Seyfried TN, Flores RE, Poff AM, D’Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515–27.

    Article  PubMed  Google Scholar 

  51. Berridge MV, McConnell MJ, Grasso C, Bajzikova M, Kovarova J, Neuzil J. Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr Opin Genet Dev. 2016;38:75–82.

    Article  PubMed  Google Scholar 

  52. Berridge MV, Crasso C, Neuzil J. Mitochondrial genome transfer to tumor cells breaks the rules and establishes a new precedent in cancer biology. Mol Cell Oncol. 2018;5(5):e1023929.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hubackova S, Novais SM, Davidova E, Neuzil J, Rohlena J. Mitochondria-driven elimination of cancer and senescent cells. Biol Chem. 2018. pii: /j/bchm.just-accepted/hsz-2018-0256/hsz-2018-0256.xml.

    Google Scholar 

  54. Kim SY. Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers. Biomol Ther (Seoul). 2015;23(2):99–109.

    Article  Google Scholar 

  55. Lee S, Lee JS, Seo J, Lee SH, Kang JH, Song J, Kim SY. Targeting mitochondrial oxidative phosphorylation abrogated irinotecan resistance in NSCLC. Sci Rep. 2018;8(1):15707.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boshoff C. Keynote address V. Towards personalized treatment for head and neck cancer. Oral Ocol. 2013;49(Supplement 1):S3.

    Article  Google Scholar 

  57. Thomas GJ, Speight PM. Cell adhesion molecules and oral cancer. Crit Rev Oral Biol Med. 2001;12(6):479–98.

    Article  PubMed  Google Scholar 

  58. Frank DE, Carter WG. Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J Cell Sci. 2004;117(Pt 8):1351–63.

    Article  PubMed  Google Scholar 

  59. Naresh KN, Lakshminarayanan K, Pai SA, Borges AM. Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: a hypothesis to support this paradoxical association. Cancer. 2001;91(3):578–84.

    Article  PubMed  Google Scholar 

  60. Wang Z, Valera JC, Zhao X, Chen Q, Gutkind SJ. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev. 2017;36(3):491–502.

    Article  PubMed  Google Scholar 

  61. Nör JE, Gutkind JS. Head and neck cancer in the new era of precision medicine. J Dent Res. 2018;97(6):601–2.

    Article  PubMed  Google Scholar 

  62. Khan Z. Survivin as a therapeutic target in squamous cell carcinoma. In: Warnakulasuriya S, Khan Z, editors. Squamous cell carcinoma: molecular therapeutic targets. Berlin: Springer; 2017. p. 183–204. https://doi.org/10.1007/978-94-024-1084-6.

    Chapter  Google Scholar 

  63. Peery RC, Liu JY, Zhang JT. Targeting survivin for therapeutic discovery: past, present, and future promises. Drug Discov Today. 2017;22(10):1466–77.

    Article  PubMed  Google Scholar 

  64. Vanden Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis:the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47.

    Article  Google Scholar 

  65. Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin Cell Dev Biol. 2015;39:43–55.

    Article  PubMed  Google Scholar 

  66. http://www.genetex.com/Web/News/NewsList.aspx?id=362, Accessed 31 Oct 2018.

  67. Zhang Y, Liao Z, Zhang LI, Xiao HT. The utility of chloroquine in cancer therapy. Curr Med Res Opin. 2015;31(5):1009–13.

    Article  PubMed  Google Scholar 

  68. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. EMBOJ. 2015;34(7):856–80.

    Article  Google Scholar 

  69. Fotheringham JA, Raab-Traub N. Epstein barr-virus latent membrane protein 2 induces autophagy to prevent cell death. J Virol. 2015;89:pii: JVI. 03371–14.

    Article  Google Scholar 

  70. Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16(6):329–44.

    Article  PubMed  PubMed Central  Google Scholar 

  71. David MS, Huynh MD, Kelly E, Rizos H, Coleman H, Rogers G, Zoellner H. Membrane and cytoplasmic marker exchange between malignant neoplastic cells and fibroblasts via intermittent contact: increased tumour cell diversity independent of genetic change. J Pathol. 2012;228(4):495–505.

    Article  PubMed  Google Scholar 

  72. Alnuaimi AD, Wiesenfeld D, O’Brien-Simpson NM, Reynolds EC, McCullough MJ. Oral Candida colonization in oral cancer patients and its relationship with traditional risk factors of oral cancer: a matched case-control study. Oral Oncol. 2015;51(2):139–45.

    Article  PubMed  Google Scholar 

  73. Krogh P, Hald B, Holmstrup P. Possible mycological etiology of oral mucosal cancer: catalytic potential of infecting Candida albicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogenesis. 1987;8(10):1543–8.

    Article  PubMed  Google Scholar 

  74. Ramirez-Garcia A, Rementeria A, Aguirre-Urizar JM, Moragues MD, Antoran A, Pellon A, Abad-Diaz-de-Cerio A, Hernando FL. Candida albicans and cancer: can this yeast induce cancer development or progression? Crit Rev Microbiol. 2014;25:1–13.

    Article  Google Scholar 

  75. Perera M, Al-Hebshi NN, Perera I, Ipe D, Ulett GC, Speicher DJ, Chen T, Johnson NW. A dysbiotic mycobiome dominated by Candida albicans is identified within oral squamous-cell carcinomas. J Oral Microbiol. 2017;9(1):1385369.

    Google Scholar 

  76. Moritani K, Takeshita T, Shibata Y, Ninomiya T, Kiyohara Y, Yamashita Y. Acetaldehyde production by major oral microbes. Oral Dis. 2015;21(6):748–54.

    Article  PubMed  Google Scholar 

  77. Yao QW, Zhou DS, Peng HJ, Liu DS. Association of periodontal disease with oral cancer: a meta-analysis. Tumour Biol. 2014;35(7):7073–7.

    Article  PubMed  Google Scholar 

  78. Javed F, Warnakulasuriya S. Is there a relationship between periodontal disease and oral cancer? A systematic review of currently available evidence. Crit Rev Oncol Hematol. 2016;97:197–205.

    Article  PubMed  Google Scholar 

  79. Wang L, Ganly I. The oral microbiome and oral cancer. Clin Lab Med. 2014;34(4):711–9.

    Article  PubMed  Google Scholar 

  80. Sahingur SE, Yeudall WA. Chemokine function in periodontal disease and oral cavity cancer. Front Immunol. 2015;6:214. (eCollection).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Perera M, Al-Hebshi NN, Perera I, Ipe D, Ulett GC, Speicher DJ, Chen T, Johnson NW. Inflammatory bacteriome and oral squamous cell carcinoma. J Dent Res. 2018 Jun;97(6):725–32.

    Article  PubMed  Google Scholar 

  82. Modi BG, Neustadter J, Binda E, Lewis J, Filler RB, Roberts SJ, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335(6064):104–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ohman J, Magnusson B, Telemo E, Jontell M, Hasseus B. Langerhans cells and T cells sense cell dysplasia in oral leukoplakias and oral squamous cell carcinomas–evidence for immunosurveillance. Scand J Immunol. 2012;76(1):39–48.

    Article  PubMed  Google Scholar 

  84. Upadhyay J, Rao NN, Upadhyay RB. A comparative analysis of Langerhans cell in oralepithelial dysplasia and oral squamous cell carcinoma using antibody CD-1a. J Cancer Res Ther. 2012;8(4):591–7.

    Article  PubMed  Google Scholar 

  85. Lijima N, Goodwin EC, Dimaio D, Iwasaki A. High-risk human papillomavirus E6 inhibits monocyte differentiation to Langerhans cells. Virology. 2013;444(1–2):257–62.

    Google Scholar 

  86. Yanofsky VR, Mitsui H, Felsen D, Carucci JA. Understanding dendritic cells and their role in cutaneous carcinoma and cancer immunotherapy. Clin Dev Immunol. 2013;2013:624123.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lewis JS, Duncavage E, Klonowski PW. Oral cavity neuroendocrine carcinoma: a comparison study with cutaneous Merkel cell carcinoma and other mucosal head and neck neuroendocrine carcinomas. Oral Surg Oral Med Oral Pathol. 2010; https://doi.org/10.1016/j.tripleo.2010.04.007.

    Article  PubMed  Google Scholar 

  88. Pellitteri PK, Takes RP, Lewis JS Jr, Devaney KO, Harlor EJ, Strojan P, Rodrigo JP, Suárez C, Rinaldo A, Medina JE, Woolgar JA, Ferlito A. Merkel cell carcinoma of the head and neck. Head Neck. 2012;34(9):1346–54.

    Article  PubMed  Google Scholar 

  89. Hetal F. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  Google Scholar 

  90. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ. The significant role of mast cells in cancer. Cancer Metastasis Rev. 2011;30(1):45–60.

    Article  PubMed  Google Scholar 

  91. Maciel TT, Moura IC, Hermine O. The role of mast cells in cancers. F1000 Prime Rep. 2015;7:09. https://doi.org/10.12703/P7-09. (eCollection 2015).

    Article  Google Scholar 

  92. Broders AC. The microscopic grading of cancer. Surg Clin North Am. 1941;21:947–62.

    Google Scholar 

  93. Lindenblatt RC, Martinez GL, Silva LE, Faria PS, Camisasca DR, LourençoSde Q. Oral squamous cell carcinoma grading systems–analysis of the best survival predictor. J Oral Pathol Med. 2012;41(1):34–9.

    Article  Google Scholar 

  94. Johnson NW. Histological and histochemical studies of oral cancer. Int Dent J. 1977;27(1):25–34.

    PubMed  Google Scholar 

  95. Zheng TZ, Boyle P, Hu HF, Duan J, Jian PJ, Ma DQ, Shui LP, Niu SR, Scully C, MacMahon B. Dentition, oral hygiene, and risk of oral cancer: a case-control study in Beijing, People’s Republic of China. Cancer Causes Control. 1990;1(3):235–41.

    Article  PubMed  Google Scholar 

  96. Bektas-Kayhan K, Karagoz G, Kesimli MC, Karadeniz AN, Meral R, Altun M, Unur M. Carcinoma of the tongue: a case-control study on etiologic factors and dental trauma. Asian Pac J Cancer Prev. 2014;15(5):2225–9.

    Article  PubMed  Google Scholar 

  97. Gupta B, Johnson NW. Emerging and established global life-style risk factors for cancer of the upper aero-digestive tract. Asian Pac J Cancer Prev. 2014;15(15):5983–91.

    Article  PubMed  Google Scholar 

  98. Johnson NW. The role of histopathology in diagnosis and prognosis of oral squamous cell carcinoma. Proc R Soc Med. 1976;69(10):740–7.

    PubMed  PubMed Central  Google Scholar 

  99. http://www.rcpath.org/publications-media/publications/datasets/datasets-TP.htm. Accessed 28 Dec 2014.

  100. http://www.rcpa.edu.au/Library/Practising-Pathology/Structured-Pathology-Reporting-of-Cancer/ Cancer-Protocols. Accessed 28 Dec 2014.

  101. Woodford D, Johnson SD, DeCosta A-MA, Young MRI. An inflammatory cytokine milieu is prominent in premalignant oral lesions, but subsides when lesions progress to squamous cell carcinoma. J Clin Cell Immunol. 2014;5(3):pii: 230.

    Google Scholar 

  102. Cuzick J, Thorat MA, Bosetti C, Brown PH, Burn J, Cook NR, Ford LG, Jacobs EJ, Jankowski JA, La Vecchia C, Law M, Meyskens F, Rothwell PM, Senn HJ, Umar A. Estimates of benefits and harms of prophylactic use of aspirin in the general population. Ann Oncol. 2015;26(1):47–57.

    Article  PubMed  Google Scholar 

  103. Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol. 2013;49(9):887–92.

    Article  PubMed  Google Scholar 

  104. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Kiaris H, Chatzistamou I, Kalofoutis C, Koutselini H, Piperi C, Kalofoutis A. Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Mol Cell Biochem. 2004;261(1–2):117–22.

    Google Scholar 

  105. Bhowmick NA, Moses HL. Tumor-stroma interactions. Curr Opin Genet Dev. 2005;15(1):97–101.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in 424 the stroma of breast carcinomas. Nat Genet. 2002;32:355–7.

    Article  PubMed  Google Scholar 

  107. Schmitd LB, Scanlon CS, D’Silva NJ. Perineural invasion in head and neck Cancer. J Dent Res. 2018; https://doi.org/10.1177/0022034518756297.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Balasubramanian P, Lang JC, Jatana KR, Miller B, Ozer E, et al. Multiparameter analysis, including EMT markers, on negatively enriched blood samples from patients with squamous cell carcinoma of the head and neck. PLoS One. 2012;7(7):e42048.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun JL, Lopez-Lopez R, Muinelo-Romay L, Suarez-Cunqueiro MM. Liquid biopsy in oral cancer. Int J Mol Sci. 2018;19(6):pii: E1704.

    Article  Google Scholar 

  110. Shaw RJ, Brown JS, Lowe D, Rogers SN, Vaughan ED. The influence of the pattern of mandibular invasion on recurrence and survival in oral squamous cell carcinoma. Head Neck. 2004;26(10):861–9.

    Article  PubMed  Google Scholar 

  111. Quan J, Johnson NW, Zhou G, Parsons PG, Boyle GM, Gao J. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev. 2012;31(1–2):209–19.

    Article  PubMed  Google Scholar 

  112. Quan J, Morrison NA, Johnson NW, Gao J. MCP-1 as a potential target to inhibit the bone invasion by oral squamous cell carcinoma. J Cell Biochem. 2014;115(10):1787–98.

    Article  PubMed  Google Scholar 

  113. Novartis Foundation Symposium on Immunopotentiation (1973) Reprinted Wiley, 2009, EBook ISBN9780470717684.

    Google Scholar 

  114. Rich AM, Hussaini HM, Parachuru VPB, Seymour GJ. Toll-like receptors and cancer particularly oral squamous cell carcinoma. Front Immunol. 2014;5:464.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Khan AA, Khan Z, Warnakulasuriya S. Cancer associated Toll like receptor (TLR) modulation and insinuation in infection susceptibility: association or oincidence? Ann Oncol. 2016;27(6):984–97.

    Article  PubMed  Google Scholar 

  116. Papa et al. 2018, http://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.3046, Accessed 31 Oct 2018.

  117. Repasky EA, Eng J, Hylander BL. Stress, metabolism and cancer: integrated pathways contributing to immune suppression. Cancer J. 2015;21(2):97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Laviano A, Koverech A, Mari A. Cachexia: clinical features when inflammation drives malnutrition. Proc Nutr Soc. 2015;26:1–7.

    Google Scholar 

  119. Yong AA, Tey HL. Paraneoplastic pemphigus. Australas J Derm. 2013;54(4):241–50.

    Article  Google Scholar 

  120. Chapireau D, Adlam D, Cameron M, Thompson M. Paraneoplastic syndromes in patients with primary oral cancers: a systematic review. Br J Oral Maxillofac Surg. 2010;48(5):338–44.

    Article  PubMed  Google Scholar 

  121. Toro C, Rinaldo A, Silver CE, Politi M, Ferlito A. Paraneoplastic syndromes in patients with oral cancer. Oral Oncol. 2010;46(1):14–8.

    Article  PubMed  Google Scholar 

  122. Speight PM. Histopathology. In: Shah JP, Johnson NW, editors. Oral and oropharyngeal cancer. 2nd ed: CRC Press; 2018.

    Google Scholar 

Download references

Acknowledgement

Some contents of this Chapter are reused under licence 4636580828816. These are based on previously published work in “Squamous Cell Carcinoma- Molecular Therapeutic Targets” published by Springer Nature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Newell W. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, N.W. (2020). Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. In: Warnakulasuriya, S., Greenspan, J. (eds) Textbook of Oral Cancer. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-32316-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32316-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32315-8

  • Online ISBN: 978-3-030-32316-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics