Skip to main content

Oxidative Stress and Its Association with Male Infertility

  • Chapter
  • First Online:
Male Infertility

Abstract

Reactive oxygen species (ROS) is one of the most common causatives of male infertility. At normal physiological levels, ROS mediate essential physiological roles to ensure proper male reproductive functions such as sperm viability, maturation, hyperactivation, sperm capacitation, motility, and acrosome reaction (AR). Imbalance in ROS generation and antioxidant capacity induces oxidative stress (OS). The excess ROS adversely affects sperm morphology and functions through lipid peroxidation, DNA fragmentation, and apoptosis. These deleterious effects compromise sperm quality in terms of their viability, count, motility, and even fertilizing capability, resulting in male subfertility or, most often, infertility. Assessment and management of OS-induced male infertility is the major concern in current reproductive research arena. This chapter provides a concise review on the generation of ROS in the male reproductive tract and their physiological and pathological roles in male reproduction, with assessment and management of OS-induced male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal A, et al. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37.

    PubMed  PubMed Central  Google Scholar 

  2. Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect. 1994;102(Suppl 10):5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson A, Agarwal A, du Plessis SS. Physiological role of reactive oxygen species in sperm function: a review. Antioxidants in male infertility: a guide for clinicians and researchers. New York, USA: Springer Science and Business Media. 2013:69–89.

    Google Scholar 

  4. Ochsendorf F. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  6. Aitken RJ, et al. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(1–2):1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez JG, Storey BT. Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol Reprod. 1984;30(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  8. Cheeseman K, Slater T. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal A, et al. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006;86(4):878–85.

    Article  CAS  PubMed  Google Scholar 

  10. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.

    CAS  PubMed  Google Scholar 

  11. Valko M, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  12. Doshi SB, et al. Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol. 2012;10:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  14. Chen SJ, et al. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288(1):191–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wallach EE, Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63(6):1143–57.

    Article  Google Scholar 

  16. Press W. Laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010. p. 7–113.

    Google Scholar 

  17. Loveland KL, et al. Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol (Lausanne). 2017;8:307.

    Article  Google Scholar 

  18. Said TM, et al. Impact of sperm morphology on DNA damage caused by oxidative stress induced by β-nicotinamide adenine dinucleotide phosphate. Fertil Steril. 2005;83(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  19. Ghanbari H, Keshtgar S, Kazeroni M. Inhibition of the CatSper channel and NOX5 enzyme activity affects the functions of the progesterone-stimulated human sperm. Iran J Med Sci. 2018;43(1):18–25.

    PubMed  PubMed Central  Google Scholar 

  20. Schaeffer AJ. Epidemiology and demographics of prostatitis. Andrologia. 2003;35(5):252–7.

    Article  CAS  PubMed  Google Scholar 

  21. Fraczek M, et al. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J Androl. 2008;29(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  22. Papes D, et al. Detection of sexually transmitted pathogens in patients with chronic prostatitis/chronic pelvic pain: a prospective clinical study. Int J STD AIDS. 2017;28(6):613–5.

    Article  PubMed  Google Scholar 

  23. Bezold G, Lange M, Peter RU. Homozygous methylenetetrahydrofolate reductase C677T mutation and male infertility. N Engl J Med. 2001;344(15):1172–3.

    Article  CAS  PubMed  Google Scholar 

  24. Krause W, et al. Cellular and biochemical markers in semen indicating male accessory gland inflammation. Andrologia. 2003;35(5):279–82.

    Article  CAS  PubMed  Google Scholar 

  25. Chaillon A, et al. HIV trafficking between blood and semen during early untreated HIV infection. J Acquir Immune Defic Syndr. 2017;74(1):95–102.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seronello S, Sheikh MY, Choi J. Redox regulation of hepatitis C in nonalcoholic and alcoholic liver. Free Radic Biol Med. 2007;43(6):869–82.

    Article  CAS  PubMed  Google Scholar 

  27. Vicari E, et al. Sperm output in patients with primary infertility and hepatitis B or C virus; negative influence of HBV infection during concomitant varicocele. Minerva Med. 2006;97(1):65–77.

    CAS  PubMed  Google Scholar 

  28. Srinivasan S, et al. Oxidative stress in urogenital tuberculosis patients: a predisposing factor for renal stone formation—amelioration by vitamin E supplementation. Clin Chim Acta. 2004;350(1–2):57–63.

    Article  CAS  PubMed  Google Scholar 

  29. Vijayaraghavan R, et al. Protective role of vitamin E on the oxidative stress in Hansen’s disease (Leprosy) patients. Eur J Clin Nutr. 2005;59(10):1121.

    Article  CAS  PubMed  Google Scholar 

  30. Guha M, et al. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J. 2006;20(8):1224–6.

    Article  CAS  PubMed  Google Scholar 

  31. Maçao LB, et al. Antioxidant therapy attenuates oxidative stress in chronic cardiopathy associated with Chagas’ disease. Int J Cardiol. 2007;123(1):43–9.

    Article  PubMed  Google Scholar 

  32. Burke AJ, et al. Inflammation and nitrosative stress effects in ovarian and prostate pathology and carcinogenesis. Antioxid Redox Signal. 2017;26(18):1078–90.

    Article  CAS  PubMed  Google Scholar 

  33. Motrich RD, et al. Reduced semen quality in chronic prostatitis patients that have cellular autoimmune response to prostate antigens. Hum Reprod. 2005;20(9):2567–72.

    Article  PubMed  Google Scholar 

  34. Shoskes DA, et al. Cytokine polymorphisms in men with chronic prostatitis/chronic pelvic pain syndrome: association with diagnosis and treatment response. J Urol. 2002;168(1):331–5.

    Article  CAS  PubMed  Google Scholar 

  35. Henkel R, et al. Chronic pelvic pain syndrome/chronic prostatitis affect the acrosome reaction in human spermatozoa. World J Urol. 2006;24(1):39–44.

    Article  PubMed  Google Scholar 

  36. Patel AP, Smith RP. Vasectomy reversal: a clinical update. Asian J Androl. 2016;18(3):365–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nandipati K, et al. Relationship of interleukin-6 with semen characteristics and oxidative stress in vasectomy reversal patients. Andrologia. 2005;37(4):131–4.

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online. 2006;12(5):630–3.

    Article  CAS  PubMed  Google Scholar 

  39. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    CAS  PubMed  Google Scholar 

  40. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  41. Majzoub A, Agarwal A, Esteves SC. Sperm DNA fragmentation testing in patients with subclinical varicocele: is there any evidence? Transl Androl Urol. 2017;6(Suppl 4):S459–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Will MA, et al. The great debate: varicocele treatment and impact on fertility. Fertil Steril. 2011;95(3):841–52.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  44. Scholze A, et al. Oxidative stress in chronic kidney disease. Oxid Med Cell Longev. 2016;2016:8375186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirsch RE, et al. HbE/beta-thalassemia and oxidative stress: the key to pathophysiological mechanisms and novel therapeutics. Antioxid Redox Signal. 2017;26(14):794–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen MJ, et al. Effect of iron overload on impaired fertility in male patients with transfusion-dependent beta-thalassemia. Pediatr Res. 2018;83(3):655–61.

    Article  CAS  PubMed  Google Scholar 

  47. Cornet D, et al. Association between the MTHFR-C677T isoform and structure of sperm DNA. J Assist Reprod Genet. 2017;34(10):1283–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bisht S, Chawla B, Dada R. Oxidative stress and polymorphism in MTHFR SNPs (677 and 1298) in paternal sperm DNA is associated with an increased risk of retinoblastoma in their children: a case-control study. J Pediatr Genet. 2018;7(3):103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh V, et al. SNPs in ERCC1, ERCC2, and XRCC1 genes of the DNA repair pathway and risk of male infertility in the Asian populations: association study, meta-analysis, and trial sequential analysis. J Assist Reprod Genet. 2019;36:79–90.

    Article  PubMed  Google Scholar 

  50. Lai H, et al. Association between genetic polymorphism in NFKB1 and NFKBIA and coronary artery disease in a Chinese Han population. Int J Clin Exp Med. 2015;8(11):21487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Agarwal A, et al. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.

    Article  PubMed  Google Scholar 

  52. Agarwal A, et al. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Houston BJ, et al. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016;152(6):R263–76.

    Article  CAS  PubMed  Google Scholar 

  54. Sabeti P, et al. Etiologies of sperm oxidative stress. Int J Reprod Biomed (Yazd). 2016;14(4):231–40.

    CAS  Google Scholar 

  55. Saleh RA, et al. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.

    Article  PubMed  Google Scholar 

  56. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    CAS  PubMed  Google Scholar 

  57. Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11(4):1279–304.

    Article  PubMed  Google Scholar 

  58. Mittler R, et al. ROS signaling: the new wave? Trends Plant Sci. 2011;16(6):300–9.

    Article  CAS  PubMed  Google Scholar 

  59. Du Plessis SS, et al. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet. 2015;32(4):509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  61. Fujii J, Tsunoda S. Redox regulation of fertilisation and the spermatogenic process. Asian J Androl. 2011;13(3):420–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fraczek M, Kurpisz M. Inflammatory mediators exert toxic effects of oxidative stress on human spermatozoa. J Androl. 2007;28(2):325–33.

    Article  CAS  PubMed  Google Scholar 

  63. Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84(10):1039–52.

    Article  CAS  PubMed  Google Scholar 

  64. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6):647–57.

    Article  CAS  PubMed  Google Scholar 

  65. Khosrowbeygi A, Zarghami N. Fatty acid composition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids. 2007;77(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  66. Martínez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9(1):102–7.

    Article  CAS  PubMed  Google Scholar 

  67. Armstrong JS, et al. A comparison of the NADPH oxidase in human sperm and white blood cells. Int J Androl. 2002;25(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  68. Opuwari CS, Henkel RR. An update on oxidative damage to spermatozoa and oocytes. Biomed Res Int. 2016;2016:9540142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shen H, Ong C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med. 2000;28(4):529–36.

    Article  CAS  PubMed  Google Scholar 

  70. Ahmad G, Agarwal A. Ionizing radiation and male fertility. In: Male infertility: New York, USA: Springer; 2017. p. 185–96.

    Google Scholar 

  71. Henkel R, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.

    Article  CAS  PubMed  Google Scholar 

  72. Sakkas D, et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  73. Sakkas D, et al. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod. 1995;52(5):1149–55.

    Article  CAS  PubMed  Google Scholar 

  74. Sakamoto Y, et al. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547–52.

    Article  CAS  PubMed  Google Scholar 

  75. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y-J, et al. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  77. Esteves SC, et al. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104(6):1398–405.

    Article  PubMed  Google Scholar 

  78. John Aitken R, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183–97.

    Article  Google Scholar 

  79. Khazaei M, Aghaz F. Reactive oxygen species generation and use of antioxidants during in vitro maturation of oocytes. Int J Fertil Steril. 2017;11(2):63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ali I, et al. Reactive oxygen species-mediated unfolded protein response pathways in preimplantation embryos. J Vet Sci. 2017;18(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scott R 3rd, Zhang M, Seli E. Metabolism of the oocyte and the preimplantation embryo: implications for assisted reproduction. Curr Opin Obstet Gynecol. 2018;30(3):163–70.

    PubMed  Google Scholar 

  82. Agarwal A, Ahmad G, Sharma R. Reference values of reactive oxygen species in seminal ejaculates using chemiluminescence assay. J Assist Reprod Genet. 2015;32(12):1721–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Agarwal A, et al. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.

    Article  CAS  PubMed  Google Scholar 

  84. Gianaroli L, et al. Prolonged sperm-oocyte exposure and high sperm concentration affect human embryo viability and pregnancy rate. Hum Reprod. 1996;11(11):2507–11.

    Article  CAS  PubMed  Google Scholar 

  85. Bedaiwy M, et al. Role of total antioxidant capacity in the differential growth of human embryos in vitro. Fertil Steril. 2006;86(2):304–9.

    Article  CAS  PubMed  Google Scholar 

  86. Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004;25(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  87. Tremellen K. Oxidative stress and male infertility--a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  CAS  PubMed  Google Scholar 

  88. Aydemir B, et al. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  89. Agarwal A, Majzoub A. Laboratory tests for oxidative stress. Indian J Urol: IJU. 2017;33(3):199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  90. McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108(8):652–9.

    Article  CAS  PubMed  Google Scholar 

  91. Agarwal A, et al. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol. 2016;8(5):302–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rael LT, et al. Oxidation-reduction potential and paraoxonase-arylesterase activity in trauma patients. Biochem Biophys Res Commun. 2007;361(2):561–5.

    Article  CAS  PubMed  Google Scholar 

  93. Rael LT, et al. Plasma oxidation-reduction potential and protein oxidation in traumatic brain injury. J Neurotrauma. 2009;26(8):1203–11.

    Article  PubMed  Google Scholar 

  94. Agarwal A, et al. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: clinical utility in male factor infertility. Reprod Biomed Online. 2017;34:48–57.

    Article  CAS  PubMed  Google Scholar 

  95. Agarwal A, et al. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016;106(3):566–73.

    Article  CAS  PubMed  Google Scholar 

  96. Sengupta P. Recent trends in male reproductive health problems. Asian J Pharm Clin Res. 2014;7(2):1–5.

    Google Scholar 

  97. Sengupta P, Dutta S. Metals. In: Skinner MK, editor. Reference module in biomedical sciences: encyclopedia of reproduction. San Diego: Elsevier; 2018.

    Google Scholar 

  98. Hammadeh ME, Hamad MF. Reactive oxygen species and antioxidant in seminal plasma and their impact on male fertility. Int J Fertil Steril. 2009;3(3):87–110.

    Google Scholar 

  99. McDowell LR, et al. Vitamins and minerals functioning as antioxidants with supplementation considerations. In: Florida ruminant nutrition symposium. Gainesville: Best Western Gateway Grand; 2007.

    Google Scholar 

  100. Sengupta P, et al. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod Biomed Online. 2018;36(3):311–26.

    Article  PubMed  Google Scholar 

  101. Zini A, Al-Hathal N. Antioxidant therapy in male infertility: fact or fiction? Asian J Androl. 2011;13(3):374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Agarwal A, Majzoub A. Role of antioxidants in male infertility. BJUI Knowledge. 2016;e-learning module:1–9.

    Google Scholar 

  103. Agarwal A, Majzoub A. Role of antioxidants in assisted reproductive techniques. World J Mens Health. 2017;35(2):1–17.

    Article  Google Scholar 

  104. Magdi Y, et al. Effect of modifiable lifestyle factors and antioxidant treatment on semen parameters of men with severe oligoasthenoteratozoospermia. Andrologia. 2017;49(7):e12694.

    Article  CAS  Google Scholar 

  105. Majzoub A, Agarwal A. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia. Indian J Urol. 2017;33(3):207–14.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Majzoub A, Agarwal A, Esteves SC. Antioxidants for elevated sperm DNA fragmentation: a mini review. Transl Androl Urol. 2017;6(Suppl 4):S649–53.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26(7):1628–40.

    Article  PubMed  Google Scholar 

  108. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16(1):113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mostafa T, et al. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24(5):261–5.

    Article  CAS  PubMed  Google Scholar 

  110. Chen SS, et al. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, A., Sengupta, P. (2020). Oxidative Stress and Its Association with Male Infertility. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics