Skip to main content

Heartbeat Classification Using 1D Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1058))

Abstract

Electrocardiogram (ECG) is an essential source of information for heart diseases classification. Hence, it is used by the cardiologist to diagnose heart attacks and detect the abnormalities of the heart. The automatic classification of the ECG signals is playing a vital role in the clinical diagnosis of heart diseases. In this paper, an end-to-end classification method is proposed using 1D Convolution Neural Networks (CNN) to extract the important features from the input signals and classify it automatically. The main advantage of CNN compared to the related work methods is that it gets rid of the hand-crafted features by combining the feature extraction and the classification into a single learning method without any human supervision. The proposed solution consists of data filtering, dynamic heartbeat segmentation, and 1D-CNN consisting of 10 layers without the input and the output layers.

Our experimental results on 14 classes of the public MIT-BIH arrhythmia dataset achieved a promising classification accuracy of 97.8% which outperforms several ECG classification methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tantawi, M., Revett, K., Salem, A.-B., Tolba, M.F.: Electrocardiogram (ECG): a new burgeoning utility for biometric recognition. In: Hassanien, A., Kim, T.H., Kacprzyk, J., Awad, A. (eds.) Bio-Inspiring Cyber Security and Cloud Services: Trends and Innovations, Intelligent Systems Reference Library, vol. 70, pp. 349–382. Springer, Heidelberg (2014)

    Google Scholar 

  2. Artis, S.G., Mark, R.G., Moody, G.B.: Detection of atrial fibrillation using artificial neural networks. In: Proceedings of the Computers in Cardiology, Venice, Italy, 23–26 September 1991, IEEE, Piscataway, NJ, USA, pp. 173–176 (1991)

    Google Scholar 

  3. Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)

    Article  Google Scholar 

  4. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013)

    Article  Google Scholar 

  5. Alfonso, V.X., Tompkins, J.: Detecting ventricular fibrillation. IEEE Trans. Biomed. Eng. 54(1), 174–177 (2007)

    Article  Google Scholar 

  6. Minami, K., Nakajima, H., Toyoshima, T.: Real-time discrimination of ventricular tachyarrhythmia with Fouriertransform neural network. IEEE Trans. Biomed. Eng. 46(2), 179–185 (1999)

    Article  Google Scholar 

  7. Ye, C., Vijaya Kumar, B.V.K., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. (2012)

    Google Scholar 

  8. Kastor, J.A.: Arrhythmias, 2nd edn. W.B. Saunders, London (1994)

    Google Scholar 

  9. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001). [CrossRef] [PubMed]

    Article  Google Scholar 

  10. El-Saadawy, H., Tantawi, M., Shedeed, H.A., Tolba, M.F.: Electrocardiogram (ECG) classification based on dynamic beats segmentation. In: Proceedings of the 10th International Conference on Informatics and Systems - INFOS 2016 (2016). https://doi.org/10.1145/2908446.2908452

  11. Gautam, M.K., Giri, V.K.: A neural network approach and wavelet analysis for ECG classification. In: Proceedings of the 2016 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 17–18 March 2016, IEEE: Piscataway, NJ, USA, pp. 1136–1141 (2016)

    Google Scholar 

  12. Zebardast, B., Ghaffari, A., Masdari, M.: A new generalized regression artificial neural networks approach for diagnosing heart disease. Int. J. Innov. Appl. Stud. 4, 679 (2013)

    Google Scholar 

  13. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Briefings Bioinform. 18, 851–869 (2017)

    Google Scholar 

  14. Bakator, M., Radosav, D.: Deep learning and medical diagnosis: a review of literature. Multimodal Technol. Interact. 2, 47 (2018). https://doi.org/10.3390/mti2030047

  15. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  Google Scholar 

  16. Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34, 2841–2846 (2008)

    Article  Google Scholar 

  17. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  18. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)

    Article  Google Scholar 

  19. Martis, R.J., Acharya, U.R., Mandana, K., Ray, A.K., Chakraborty, C.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39, 11792–11800 (2012)

    Article  Google Scholar 

  20. Yazdanian, H., Nomani, A., Yazdchi, M.R.: Autonomous detection of heartbeats and categorizing them by using support vector machines. IEEE (2013)

    Google Scholar 

  21. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Meth. Programs Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  22. Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51, 582–589 (2004)

    Article  Google Scholar 

  23. Khazaee, A.: Combining SVM and PSO for PVC detection. Int. J. Adv. Eng. Sci. 3(4) (2013)

    Google Scholar 

  24. Khalaf, A.F., Owis, M.I., Yassine, I.A.: A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 42, 8361–8368 (2015)

    Article  Google Scholar 

  25. El-Saadawy, H., Tantawi, M., Shedeed, H.A., Tolba, M.F.: Hybrid hierarchical method for electrocardiogram heartbeat classification. IET Signal Process. 12(4), 506–513 (2018). https://doi.org/10.1049/iet-spr.2017.0108

  26. MIT-BIH Arrhythmias Database. http://www.physionet.org/physiobank/database/mitdb/. Accessed 12 Oct 2017

  27. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI EC57:1998 standard, Association for the Advancement of Medical Instrumentation (1998)

    Google Scholar 

  28. Thakor, N.V., Webster, J.G., Tompkins, W.J.: Estimation of QRS Complex Power Spectra for Design of a QRS Filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984). https://doi.org/10.1109/tbme.1984.325393

  29. Yang, W., Si, Y., Wang, D., Guo, B.: Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine. Comput. Biol. Med. 101, 22–32 (2018)

    Article  Google Scholar 

  30. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., Tan, R.S.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

    Article  Google Scholar 

  31. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.016

  32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelrahman M. Shaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaker, A.M., Tantawi, M., Shedeed, H.A., Tolba, M.F. (2020). Heartbeat Classification Using 1D Convolutional Neural Networks. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_46

Download citation

Publish with us

Policies and ethics