Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 185 Accesses

Abstract

The overriding aim of the work conducted in this thesis was to improve understanding of soil N cycling and NO3 partitioning and transport in soils in order to contribute knowledge vital in developing better soil management practices to increase NUE and reduce NO3 leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevenson FJ (1982) Organic forms of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, Wisconsin, USA, pp 67–74

    Google Scholar 

  2. Schulten H-R, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  3. Friedel JK, Scheller E (2002) Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biol Biochem 34:315–325

    Article  CAS  Google Scholar 

  4. Roberts P, Jones DL (2008) Critical evaluation of methods for determining total protein in soil solution. Soil Biol Biochem 40:1485–1495. https://doi.org/10.1016/j.soilbio.2008.01.001

    Article  CAS  Google Scholar 

  5. Knowles TDJ (2009) Following the fate of proteinaceous material in soil using a compound-specific 13C- and 15N-labelled tracer approach. Unpublished Ph.D. Thesis, University of Bristol, Bristol, UK

    Google Scholar 

  6. Charteris AF, Knowles TDJ, Michaelides K, Evershed RP (2016) Compound-specific amino acid 15N stable isotope probing of nitrogen assimilation by the soil microbial biomass using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 30:1846–1856. https://doi.org/10.1002/rcm.7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  8. Paul EA (2007) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press, Oxford, UK

    Google Scholar 

  9. Vessey JK (1994) Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay. Plant Soil 158:151–162

    Article  CAS  Google Scholar 

  10. Decock C, Denef K, Bodé S, Six J, Boeckx P (2009) Critical assessment of the applicability of gas chromatography-combustion-isotope ratio mass spectrometry to determine amino sugar dynamics in soil. Rapid Commun Mass Spectrom 23:1201–1211

    Article  CAS  PubMed  Google Scholar 

  11. Brand WA, Tegtmeyer AR, Hilkert A (1994) Compound-specific isotope analysis: extending toward 15N/14N and 18O/16O. Org Geochem 21:585–594

    Article  CAS  Google Scholar 

  12. Brenna JT (1994) High-precision gas isotope ratio mass spectrometry: recent advances in instrumentation and biomedical applications. Acc Chem Res 27:340–346

    Article  CAS  Google Scholar 

  13. Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855

    Article  CAS  Google Scholar 

  14. Sebilo M, Mayer B, Grably M, Billiou D, Mariotti A (2004) The use of the ‘ammonium diffusion’ method for δ15N-NH4+ and δ15N-NO 3 measurements: comparison with other techniques. Environ Chem 1:99–103. https://doi.org/10.1071/EN04037

    Google Scholar 

  15. Lachouani P, Frank AH, Wanek W (2010) A suite of sensitive chemical methods to determine the δ15N of ammonium, nitrate and total dissolved N in soil extracts. Rapid Commun Mass Spectrom 24:3615–3623. https://doi.org/10.1002/rcm.4798

    Article  CAS  PubMed  Google Scholar 

  16. Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci USA 110:18185–18189. https://doi.org/10.1073/pnas.1305372110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314. https://doi.org/10.1111/nph.12959

    Article  Google Scholar 

  18. Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632

    Article  Google Scholar 

  19. Inselsbacher E, Wanek W, Strauss J, Zechmeister-Boltenstern S, Müller C (2013) A novel 15N tracer model reveals: plant nitrate uptake governs nitrogen transformation rates in agricultural soils. Soil Biol Biochem 57:301–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Fiona Charteris .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charteris, A. (2019). Overview and Future Work. In: 15N Tracing of Microbial Assimilation, Partitioning and Transport of Fertilisers in Grassland Soils. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31057-8_7

Download citation

Publish with us

Policies and ethics