Skip to main content

Biosynthetic Routing, Rates and Extents of Microbial Fertiliser Nitrogen Assimilation in Two Grazed Grassland Soils

  • Chapter
  • First Online:
15N Tracing of Microbial Assimilation, Partitioning and Transport of Fertilisers in Grassland Soils

Part of the book series: Springer Theses ((Springer Theses))

  • 191 Accesses

Abstract

Freshwater resources worldwide are affected by high and rising NO3 concentrations which threaten human health and the natural environment, reducing diversity, resilience and value [17]. On a global scale, agriculture represents the main source of this pollution [2, 6, 7], primarily due to the run-off and leaching of mobile NO3 ions derived from manures and synthetic fertilisers [1, 3, 6, 7]. In fact, on average, only about 50% of the fertiliser N applied to crops is taken up and, under certain conditions, (soil type, season/climate, crop and management practices, especially fertiliser application rates) leaching losses can be substantial [1, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 126:145–173. https://doi.org/10.1111/aab.12014

    Article  CAS  Google Scholar 

  2. Howden NJK, Burt TP, Worrall F, Mathias SA, Whelan MJ (2013) Farming for water quality: balancing food security and nitrate pollution in UK river basins. Ann Assoc Am Geogr 103:397–407. https://doi.org/10.1080/00045608.2013.754672

    Article  Google Scholar 

  3. Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 427:159–161

    Article  CAS  Google Scholar 

  4. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global carbon cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  5. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  PubMed  Google Scholar 

  6. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  7. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  8. Dungait JAJ, Cardenas LM, Blackwell MSA, Wu L, Withers PJA, Chadwick DR, Bol R, Murray PJ, Macdonald AJ, Whitmore AP, Goulding KWT (2012) Advances in the understanding of nutrient dynamics and management in UK agriculture. Sci Total Environ 434:39–50

    Article  CAS  PubMed  Google Scholar 

  9. Goulding K, Jarvis S, Whitmore A (2008) Optimizing nutrient management for farm systems. Philos Trans R Soc B 363:667–680. https://doi.org/10.1098/rstb.2007.2177

    Article  CAS  Google Scholar 

  10. Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  11. Bosshard C, Sørensen P, Frossard E, Dubois D, Mäder P, Nanzer S, Oberson A (2009) Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems. Nutr Cycl Agroecosyst 83:271–287. https://doi.org/10.1007/s10705-008-9218-7

    Article  Google Scholar 

  12. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387. https://doi.org/10.1093/jxb/erm097

    Article  CAS  PubMed  Google Scholar 

  13. Spiertz JHJ (2010) Nitrogen, sustainable agriculture and food security: a review. Agron Sustain Dev 30:43–55. https://doi.org/10.1051/agro:2008064

    Article  CAS  Google Scholar 

  14. Cassman KG, Doberman A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    Article  PubMed  Google Scholar 

  15. Barraclough D, Geens EL, Maggs JM (1984) Fate of fertiliser nitrogen applied to grassland. II. Nitrogen-15 leaching results. J Soil Sci 35:191–199

    Article  CAS  Google Scholar 

  16. Glendining MJ, Poulton PR, Powlson DS, Jenkinson DS (1997) Fate of 15N-labelled fertilizer applied to spring barley grown on soils of contrasting nutrient status. Plant Soil 195:83–98

    Article  CAS  Google Scholar 

  17. Hancock JM, McNeill AM, McDonald GK, Holloway RE (2011) Fate of fertiliser N applied to wheat on a coarse textured highly calcareous soil under simulated semi-arid conditions. Plant Soil 348:139–153. https://doi.org/10.1007/s11104-011-0917-5

    Article  CAS  Google Scholar 

  18. Ladd JN, Amato M (1986) The fate of nitrogen from legume and fertiliser sources in soils successively cropped with wheat under field conditions. Soil Biol Biochem 18:417–425

    Article  Google Scholar 

  19. Pilbeam CJ, Hutchison D (1998) Fate of nitrogen applied in different fertilisers to the surface of a calcareous soil in Syria. Nutr Cycl Agroecosyst 52:55–60

    Article  Google Scholar 

  20. Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci USA 110:18185–18189. https://doi.org/10.1073/pnas.1305372110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Allison FE (1955) The enigma of soil nitrogen balance sheets. Adv Agron 7:213–250

    Article  Google Scholar 

  22. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  23. Monaghan R, Barraclough D (1997) Contributions to N mineralisation from soil macroorganic matter fractions incorporated into two field soils. Soil Biol Biochem 29:1215–1223

    Article  CAS  Google Scholar 

  24. Schimel JP, Bennett J (2004) Nitrogen mineralisation: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  25. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48. https://doi.org/10.1111/j.1469-8137.2008.02751.x

    Article  CAS  PubMed  Google Scholar 

  26. Neff JC, Chapin FS III, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1(4):205–211

    Article  Google Scholar 

  27. Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, vol 204. Springer, New York, USA, pp 185–186

    Google Scholar 

  28. Macdonald AJ, Poulton PR, Powlson DS, Jenkinson DS (1997) Effects of season, soil type and cropping on recoveries, residues and losses of 15N-labelled fertilizer applied to arable crops in spring. J Agric Sci 129:125–154

    Article  Google Scholar 

  29. Murphy DV, Macdonald AJ, Stockdale EA, Goulding KWT, Fortune S, Gaunt JL, Poulton PR, Wakefield JA, Webster CP, Wilmer WS (2000) Soluble organic nitrogen in agricultural soils. Biol Fertil Soils 30:374–387

    Article  CAS  Google Scholar 

  30. Jones DL, Kielland K (2012) Amino acid, peptide and protein mineralization dynamics in a taiga forest soil. Soil Biol Biochem 55:60–69. https://doi.org/10.2136/sssaj2011.0252

    Article  CAS  Google Scholar 

  31. Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717. https://doi.org/10.1016/j.soilbio.2010.04.006

    Article  CAS  Google Scholar 

  32. Charteris AF, Knowles TDJ, Michaelides K, Evershed RP (2016) Compound-specific amino acid 15N stable isotope probing of nitrogen assimilation by the soil microbial biomass using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 30:1846–1856. https://doi.org/10.1002/rcm.7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones DL, Shannon D, Murphy DV, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756. https://doi.org/10.1016/j.soilbio.2004.01.003

    Article  CAS  Google Scholar 

  34. Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415

    Article  Google Scholar 

  35. Rosswall T (1982) Microbiological regulation of the biogeochemical nitrogen cycle. Plant Soil 67:15–34

    Article  CAS  Google Scholar 

  36. Tahovská K, Kaňa J, Bárta J, Oulehle F, Richter A, Šantrůčková H (2013) Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol Biochem 59:58–71

    Article  CAS  Google Scholar 

  37. Abaas E, Hill PW, Roberts P, Murphy DV, Jones DL (2012) Microbial activity differentially regulates the vertical mobility of nitrogen compounds in soil. Soil Biol Biochem 53:120–123. https://doi.org/10.1016/j.soilbio.2012.05.003

    Article  CAS  Google Scholar 

  38. Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  39. Inselsbacher E, Hinko-Najera Umana N, Stange FC, Gorfer M, Schüller E, Ripka K, Zechmeister-Boltenstern S, Hood-Novotny R, Strauss J, Wanek W (2010) Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol Biochem 42:360–372. https://doi.org/10.1016/j.soilbio.2009.11.019

    Article  CAS  Google Scholar 

  40. Kaštovská E, Šantrůčková H (2011) Comparison of uptake of different N forms by soil microorganisms and two wet-grassland plants: a pot study. Soil Biol Biochem 43:1285–1291. https://doi.org/10.1016/j.soilbio.2011.02.021

    Article  CAS  Google Scholar 

  41. Bender SF, van der Heijden MGA (2015) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52(1):228–239. https://doi.org/10.1111/1365-2664.12351

    Article  CAS  Google Scholar 

  42. Barraclough D (1997) The direct or MIT route for nitrogen immobilisation: a 15N mirror image study with leucine and glycine. Soil Biol Biochem 29:101–108

    Article  CAS  Google Scholar 

  43. Farrell M, Hill PW, Wanniarachchi SD, Farrar J, Bardgett RD, Jones DL (2011) Rapid peptide metabolism: a major component of soil nitrogen cycling? Global Biogeochem Cycles 25:GB3014. https://doi.org/10.1029/2010gb003999

    Article  Google Scholar 

  44. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021

    Article  CAS  Google Scholar 

  45. Hadas A, Sofer M, Molina JAE, Barak P, Clapp CE (1992) Assimilation of nitrogen by soil microbial population: NH4+ versus organic nitrogen. Soil Biol Biochem 24:137–143

    Article  CAS  Google Scholar 

  46. Hill PW, Farrell M, Jones DL (2012) Bigger may be better in soil N cycling: does rapid acquisition of small L-peptides by soil microbes dominate fluxes of protein-derived N in soil? Soil Biol Biochem 48:106–112. https://doi.org/10.1016/j.soilbio.2012.01.023

    Article  CAS  Google Scholar 

  47. Jansson SL, Persson J (1982) Mineralisation and immobilisation of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, Wisconsin, USA, pp 229–252

    Google Scholar 

  48. Magasanik B (1993) The regulation of nitrogen utilization in enteric bacteria. J Cell Biochem 51:34–40

    Article  CAS  PubMed  Google Scholar 

  49. Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    Article  CAS  Google Scholar 

  50. Kramer AW, Doane TA, Horwath WR, van Kessel C (2002) Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agr Ecosyst Environ 91:233–243

    Article  Google Scholar 

  51. Kramer SB, Reganold JP, Glover JD, Bohannan BJM, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci USA 103:4522–4527. https://doi.org/10.1073/pnas.0600359103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546. https://doi.org/10.1099/mic.0.27303-0

    Article  CAS  PubMed  Google Scholar 

  53. Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  PubMed Central  Google Scholar 

  54. Moir JWB, Wood NJ (2001) Nitrate and nitrite transport in bacteria. Cell Mol Life Sci 58:215–224

    Article  CAS  PubMed  Google Scholar 

  55. González PJ, Correia C, Moura I, Brondino CD, Moura JJG (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100:1015–1023

    Article  PubMed  CAS  Google Scholar 

  56. Murphy MJ, Siegel LM, Tove SR, Kamin H (1974) Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc Natl Acad Sci USA 71:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ (2001) Purification and characterisation of a possible assimilatory nitrite reductase from the halophile archaeon Haloferax mediterranei. FEMS Microbiol Lett 196:113–118

    Article  PubMed  Google Scholar 

  58. Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ (2001) Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett 204:381–385

    Article  PubMed  Google Scholar 

  59. Rice CW, Tiedje JM (1989) Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol Biochem 21:597–602

    Article  CAS  Google Scholar 

  60. Meers JL, Tempest DW, Brown CM (1970) ‘Glutamine(amide): 2-Oxoglutarate amino transferase oxido-reductase (NADP)’, an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:178–194

    Article  Google Scholar 

  61. Miller RE, Stadtman ER (1972) Glutamate synthase from Escherichia coli: an iron-sulfide flavoprotein. J Biol Chem 247:7407–7419

    CAS  PubMed  Google Scholar 

  62. Santero E, Hervás A, Canosa I, Govantes F (2012) Glutamate dehydrogenases: enzymology, physiological role and biotechnological relevance. In: Canuto RA (ed) Dehydrogenases, pp 289–291. InTech. Published online Nov 2014

    Google Scholar 

  63. Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117:405–407

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Helling RB (1994) Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 176:4664–4668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chávez S, Lucena JM, Reyes JC, Florencio FJ, Candau P (1999) The presence of glutamate dehydrogenase is a selective advantage for the cyanobacterium Synechocystis sp. Strain PCC 6803 under nonexponential growth conditions. J Bacteriol 181:808–813

    PubMed  PubMed Central  Google Scholar 

  66. Lomnitz A, Calderón J, Hernández G, Mora J (1987) Functional analysis of ammonium assimilation enzymes in Neurospora crassa. J Gen Microbiol 133:2333–2340

    CAS  Google Scholar 

  67. Puri G, Ashman MR (1999) Microbial immobilization of 15N-labelled ammonium and nitrate in a temperate woodland soil. Soil Biol Biochem 31:929–931

    Article  CAS  Google Scholar 

  68. Recous S, Mary B, Faurie G (1990) Microbial immobilisation of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922

    Article  CAS  Google Scholar 

  69. Bengtson P, Bengtsson G (2005) Bacterial immobilization and remineralization of N at different growth rates and N concentrations. FEMS Microbiol Ecol 54:13–19. https://doi.org/10.1016/j.femsec.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  70. Glibert PM, Harrison J, Heil C, Seitzinger S (2006) Escalating worldwide use of urea: a global change contributing to coastal eutrophication. Biogeochemistry 77:441–463

    Article  CAS  Google Scholar 

  71. Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sumner JB, Hand DB, Holloway RG (1931) Studies of the intermediate products formed during hydrolysis of urea by urease. J Biol Chem 91:333–341

    CAS  Google Scholar 

  73. Arkoun M, Sarda X, Jannin L, Laîne P, Etienne P, Garcia-Mina J, Yvin J, Ourry A (2012) Hydroponics versus field lysimeter studies of urea, ammonium, and nitrate uptake by oilseed rape (Brassica napus L.). J Exp Bot 63:5245–5258

    Article  CAS  PubMed  Google Scholar 

  74. Salazar F, Martínez-Lagos J, Alfaro M, Misselbrook T (2012) Ammonia emissions from urea application to permanent pasture on a volcanic soil. Atmos Environ 61:395–399

    Article  CAS  Google Scholar 

  75. Braunstein AE, Kritzmann MG (1937) Formation and breakdown of amino-acids by intermolecular transfer of the amino group. Nature 140:503–504

    Article  Google Scholar 

  76. Feldman LI, Gunsalus IC (1950) The occurrence of a wide variety of transaminases in bacteria. J Biol Chem 187:821–830

    CAS  PubMed  Google Scholar 

  77. Knowles TDJ, Chadwick DR, Bol R, Evershed RP (2010) Tracing the rate and extent of N and C flow from 13C,15N-glycine and glutamate into individual de novo synthesised soil amino acids. Org Geochem 41:1259–1268. https://doi.org/10.1016/j.orggeochem.2010.09.003

    Article  CAS  Google Scholar 

  78. Rudman D, Meister A (1953) Transamination in Escherichia coli. J Biol Chem 200:591–604

    CAS  PubMed  Google Scholar 

  79. Jones DL, Hodge A (1999) Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol Biochem 31:1331–1342

    Article  CAS  Google Scholar 

  80. Knowles TDJ (2009) Following the fate of proteinaceous material in soil using a compound-specific 13C- and 15N-labelled tracer approach, Unpublished Ph.D. thesis, University of Bristol, Bristol, UK

    Google Scholar 

  81. Vieublé Gonod L, Jones DL, Chenu C (2006) Sorption regulates the fate of the amino acids lysine and leucine in soil aggregates. Eur J Soil Sci 57:320–329. https://doi.org/10.1111/j.1365-2389.2005.00744.x

    Article  CAS  Google Scholar 

  82. Farrell M, Hill PW, Farrar J, DeLuca TH, Roberts P, Kielland K, Dahlgren R, Murphy DV, Hobbs PJ, Bardgett RD, Jones DL (2013) Oligopeptides represent a preferred source of organic N uptake: a global phenomenon? Ecosystems 16:133–145. https://doi.org/10.1007/s10021-012-9601-8

    Article  CAS  Google Scholar 

  83. Hill PW, Farrell M, Roberts P, Farrar J, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011) Soil- and enantiomer-specific metabolism of amino acids and their peptides by Antarctic soil microorganisms. Soil Biol Biochem 43:2410–2416. https://doi.org/10.1016/j.soilbio.2011.08.006

    Article  CAS  Google Scholar 

  84. Pilbeam CJ, McNeill AM, Harris HC, Swift RS (1997) Effect of fertilizer rate and form on the recovery of 15N-labelled fertilizer applied to wheat in Syria. J Agric Sci 128:415–424

    Article  Google Scholar 

  85. Powlson DS, Hart PBS, Poulton PR, Johnston AE, Jenkinson DS (1992) Influence of soil type, crop management and weather on the recovery of 15N-labelled fertilizer applied to winter wheat in spring. J Agric Sci 118:83–100

    Article  CAS  Google Scholar 

  86. Recous S, Machet JM, Mary B (1992) The partitioning of fertilizer-N between soil and crop: comparison of ammonium and nitrate applications. Plant Soil 144:101–111

    Article  CAS  Google Scholar 

  87. Wickramasinghe KN, Rodgers GA, Jenkinson DS (1985) Transformations of nitrogen fertilisers in soil. Soil Biol Biochem 17:625–630

    Article  CAS  Google Scholar 

  88. Christie P, Wasson EA (2001) Short-term immobilization of ammonium and nitrate added to a grassland soil. Soil Biol Biochem 33:1277–1278

    Article  CAS  Google Scholar 

  89. Bunch ND, Bernot MJ (2012) Nitrate and ammonium uptake by natural stream sediment microbial communities in response to nutrient enrichment. Res Microbiol 163:137–141

    Article  CAS  PubMed  Google Scholar 

  90. Ladd JN, Parsons JW, Amato M (1977) Studies of nitrogen immobilisation and mineralisation in calcareous soils—I. Distribution of immobilised nitrogen amongst soil fractions of different particle size and density. Soil Biol Biochem 9:309–318

    Article  CAS  Google Scholar 

  91. Morvan T, Leterme P, Arsene GG, Mary B (1997) Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using 15N-labelled ammonium. Eur J Agron 7:181–188

    Article  Google Scholar 

  92. Liang B, Yang XY, Murphy DV, He XH, Zhou JB (2013) Fate of 15N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biol Fertil Soils 49:977–986. https://doi.org/10.1007/s00374-013-0789-3

    Article  CAS  Google Scholar 

  93. Nannipieri P, Ciardi C, Palazzi T, Badalucco L (1990) Short-term nitrogen reactions following the addition of urea to a grass-legume association. Soil Biol Biochem 22:533–549

    Article  Google Scholar 

  94. Nannipieri P, Falchini L, Landi L, Benedetti A, Canali S, Tittarelli F, Ferri D, Convertini G, Badalucco L, Grego S, Vittori-Antisari L, Raglione M, Barraclough D (1999) Nitrogen uptake by crops, soil distribution and recovery of urea-N in a sorghum-wheat rotation in different soils under Mediterranean conditions. Plant Soil 208:43–56

    Article  CAS  Google Scholar 

  95. Jensen LS, Pedersen IS, Hansen TB, Nielsen NE (2000) Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur J Agron 12(1):23–35

    Article  CAS  Google Scholar 

  96. Sulçe S, Palma-Lopez D, Jacquin F, Vong PC, Guiraud G (1996) Study of immobilization and remobilization of nitrogen fertilizer in cultivated soils by hydrolytic fractionation. Eur J Soil Sci 47:249–255

    Article  Google Scholar 

  97. He HB, Li XB, Zhang W, Zhang XD (2011) Differentiating the dynamics of native and newly immobilized amino sugars in soil frequently amended with inorganic nitrogen and glucose. Eur J Soil Sci 62:144–151. https://doi.org/10.1111/j.1365-2389.2010.01324.x

    Article  CAS  Google Scholar 

  98. Geisseler D, Horwath WR (2014) Investigating amino acid utilisation by soil microorganisms using compound specific stable isotope analysis. Soil Biol Biochem 74:100–105. https://doi.org/10.1016/j.soilbio.2014.02.024

    Article  CAS  Google Scholar 

  99. Dörr N, Kaiser K, Sauheitl L, Lamersdorf N, Stange CF, Guggenberger G (2012) Fate of ammonium 15N in a Norway spruce forest under long-term reduction in atmospheric N deposition. Biogeochemistry 107:409–422. https://doi.org/10.1007/s10533-010-9561-z

    Article  CAS  Google Scholar 

  100. Redmile-Gordon MA, Evershed RP, Hirsch PR, White RP, Goulding KWT (2015) Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biol Biochem 88:257–267. https://doi.org/10.1016/j.soilbio.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Low AJ, Armitage ER (1970) The composition of the leachate through cropped and uncropped soils in lysimeters compared with that of the rain. Plant Soil 33:393–411

    Article  CAS  Google Scholar 

  102. Defra (2015) The British survey of fertiliser practice 2014: fertiliser use on farm crops for crop year 2014. Report available from https://www.gov.uk/government/collections/fertiliser-usage. Accessed 15/05/2016

  103. Defra (2016) The British survey of fertiliser practice 2015: statistical notice. Report available from https://www.gov.uk/government/collections/fertiliser-usage. Accessed 27/01/2017

  104. Derrien D, Marol C, Balesdent J (2004) The dynamics of neutral sugars in the rhizosphere of wheat: an approach by 13C pulse-labelling and GC/C/IRMS. Plant Soil 267:243–253

    Article  CAS  Google Scholar 

  105. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  106. Defra (2010) Fertiliser Manual (RB209), p 60, 65. Report available from http://www.ahdb.org.uk/projects/CropNutrition.aspx. Accessed 26/03/2014

  107. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol (Isotope Geoscience Section) 59:87–102

    Article  CAS  Google Scholar 

  108. Müller C, Laughlin RJ, Christie P, Watson CJ (2011) Effects of repeated fertilizer and cattle slurry applications over 38 years on N dynamics in a temperate grassland soil. Soil Biol Biochem 43:1362–1371

    Article  CAS  Google Scholar 

  109. Ge T, Yuan H, Roberts P, Jones DL, Qin H, Tong C, Huang D (2012) Amino acid and peptide dynamics in horticultural soils under conventional and organic management strategies. J Soils Sediments 12:323–333

    Article  CAS  Google Scholar 

  110. Friedel JK, Scheller E (2002) Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biol Biochem 34:315–325

    Article  CAS  Google Scholar 

  111. Jones DL, Kermit SJ, Wright D, Cuttle SP, Bol R, Edwards AC (2005) Rapid intrinsic rates of amino acid biodegradation in soils are unaffected by agricultural management strategy. Soil Biol Biochem 37:1267–1275

    Article  CAS  Google Scholar 

  112. Schulten H-R, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  113. Harrod TR, Hogan DV (2008) The soils of North Wyke and Rowden. Revised edition of original report by Harrod TR (1981) Soil survey of England and Wales (now the National Soil Resources Institute, Cranfield University, UK). Report available from Rothamstead Research, http://www.rothamsted.ac.uk/northwyke. Accessed 05/06/2015

  114. Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertiliser nitrogen and soil nitrogen—the so-called ‘priming’ effect. J Soil Sci 36:425–444

    Article  CAS  Google Scholar 

  115. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  116. Giles M, Morley N, Baggs EM, Daniell TJ (2012) Soil nitrate reducing processes—drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00407

  117. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    Google Scholar 

  118. Bouwman AF, Boumans JM, Batjes NH (2002) Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochem Cycles 16:1024. https://doi.org/10.1029/2000GB001389

    Article  CAS  Google Scholar 

  119. Carozzi M, Ferrara RM, Rana G, Acutis M (2013) Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation. Sci Total Environ 449:126–133. https://doi.org/10.1016/j.scitotenv.2012.12.082

    Article  CAS  PubMed  Google Scholar 

  120. Thompson RB, Ryden JC, Lockyer DR (1987) Fate of nitrogen in cattle slurry following surface application or injection to grassland. J Soil Sci 38:689–700

    Article  Google Scholar 

  121. Sexstone AJ, Parkin TB, Tiedje JM (1985) Temporal response of soil denitrification rates to rainfall and irrigation. Soil Sci Soc Am J 49:99–103

    Article  CAS  Google Scholar 

  122. Tiedje JM, Sexstone AJ, Parkin TB, Revsbech NP (1984) Anaerobic processes in soil. Plant Soil 76:197–212

    Article  CAS  Google Scholar 

  123. Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  124. Juang TC, Wang MK, Chen HJ, Tan CC (2011) Ammonium fixation by surface soils and clays. Soil Sci 166:345–352

    Article  Google Scholar 

  125. Nieder R, Benbi DK, Scherer HW (2011) Fixation and defixation of ammonium in soils: a review. Biol Fertil Soils 47:1–14. https://doi.org/10.1007/s00374-010-0506-4

    Article  CAS  Google Scholar 

  126. Scherer HW, Feils E, Beuters P (2014) Ammonium fixation and release by clay minerals as influenced by potassium. Plant, Soil and Environment 60:325–331

    Article  CAS  Google Scholar 

  127. Adams E (1970) Metabolism of proline and hydroxyproline. In: Hall DA, Jackson DS (eds) International review of connective tissue research, vol 5. Academic Press, New York, USA, pp 2–82

    Google Scholar 

  128. Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  CAS  PubMed  Google Scholar 

  129. Nelson DL, Cox MM (2013) Biosynthesis of amino acids, nucleotides, and related molecules. Lehninger principles of biochemistry, 6th edn. Macmillan Higher Education, Basingstoke, UK, pp 881–928

    Google Scholar 

  130. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2007) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36:D623–D631. https://doi.org/10.1093/nar/gkm900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berg JM, Tymoczko JL, Gatto GJ Jr, Stryer L (2015) The biosynthesis of amino acids. Biochemistry, 8th edn. W. H. Freeman and Company, New York, USA, pp 713–742

    Google Scholar 

  132. Yuan J, Fowler WU, Kimball E, Lu W, Rabinowitz JD (2006) Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat Chem Biol 2:529–530. https://doi.org/10.1038/nchembio816

    Article  CAS  PubMed  Google Scholar 

  133. Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. https://doi.org/10.1146/annurev.micro.57.030502.090820

    Article  CAS  PubMed  Google Scholar 

  134. Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ahmad Z, Kai H, Harada T (1972) Effect of nitrogenous forms on immobilization and release of nitrogen in soil. J Fac Agric Kyushu Univ 17:49–65

    CAS  Google Scholar 

  136. Geisseler D, Horwath WR, Doane TA (2009) Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability. Soil Biol Biochem 41:1281–1288

    Article  CAS  Google Scholar 

  137. Müller C, Stevens RJ, Laughlin RJ, Ottow JCG, Jäger H-J (2003) Ammonium immobilisation during chloroform fumigation. Soil Biol Biochem 35:651–665. https://doi.org/10.1016/S0038-0717(03)00014-2

    Article  CAS  Google Scholar 

  138. Kowalenko CG, Cameron DR (1976) Nitrogen transformations in an incubated soil as affected by combinations of moisture content and temperature and absorption-fixation of ammonium. Can J Soil Sci 56:63–70

    Article  CAS  Google Scholar 

  139. Börjesson G, Menichetti L, Kirchmann H, Kätterer T (2012) Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils 48:245–257

    Article  CAS  Google Scholar 

  140. Černý J, Balík J, Pavlíková D, Zitková M, Sýkora K (2003) The influence of organic and mineral nitrogen fertilisers on microbial biomass nitrogen and extractable organic nitrogen in long-term experiments with maize. Plant Soil Environ 49:560–564

    Article  Google Scholar 

  141. Chakraborty A, Chakrabarti K, Chakraborty A, Ghosh S (2011) Effect of long term fertilisers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol Fertil Soils 47:227–233

    Article  Google Scholar 

  142. Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  143. Ge T, Nie S, Huang DF, Xiao H, Jones DL, Iwasaki K (2010) Assessing soluble organic nitrogen pools in horticultural soils: a case study in the suburbs of Shanghai (China). Acta Agric Scand Sect B Soil Plant Sci 60:529–538. https://doi.org/10.1080/09064710903246427

    Article  CAS  Google Scholar 

  144. Kaur K, Kapoor KK, Gupta AP (2005) Impact of organic manures with and without mineral fertilisers on soil chemical and biological properties under tropical conditions. J Plant Nutr Soil Sci 168:122–177

    Article  CAS  Google Scholar 

  145. Kirchmann H, Haberhauer G, Kandeler E, Sessitisch A, Gerzabek MH (2004) Effects of level and quality of organic matter input on carbon storage and biological activity in soils: synthesis of a long-term experiment. Global Biogeochem Cycles 18:GB4011. https://doi.org/10.1029/2003gb002204

    Article  Google Scholar 

  146. Compton JE, Watrud LS, Porteous LA, DeGrood S (2004) Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For Ecol Manage 196:143–158

    Article  Google Scholar 

  147. Kamble PN, Rousk J, Frey SD, Bååth E (2013) Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil. Soil Biol Biochem 59:32–37

    Article  CAS  Google Scholar 

  148. Söderström B, Bååth E, Lundgren B (1983) Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Can J Microbiol 29:1500–1506

    Article  Google Scholar 

  149. Mengel K (1996) Turnover of organic nitrogen in soils and its availability to crops. Plant Soil 181:83–93

    Article  CAS  Google Scholar 

  150. Mallory EB, Griffin TS (2007) Impacts of soil amendment history on nitrogen availability from manure and fertiliser. Soil Sci Soc Am J 71:964–973

    Article  CAS  Google Scholar 

  151. Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carton and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  152. Kirchmann H, Johnston AEJ, Bergström LF (2002) Possibilities for reducing nitrate leaching from agricultural land. Ambio 31:404–408

    Article  PubMed  Google Scholar 

  153. Vinten AJA, Whitmore AP, Bloem J, Howard R, Wright F (2002) Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils. Biol Fertil Soils 36:190–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Fiona Charteris .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charteris, A. (2019). Biosynthetic Routing, Rates and Extents of Microbial Fertiliser Nitrogen Assimilation in Two Grazed Grassland Soils. In: 15N Tracing of Microbial Assimilation, Partitioning and Transport of Fertilisers in Grassland Soils. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31057-8_4

Download citation

Publish with us

Policies and ethics