Skip to main content

High Speed Exception-Free Interval Arithmetic, from Closed and Bounded Real Intervals to Connected Sets of Real Numbers

  • Chapter
  • First Online:
Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 835))

Abstract

This paper gives a brief sketch of the development of interval arithmetic. Early books consider interval arithmetic for closed and bounded real intervals. It was then extended to unbounded real intervals. Considering \(-\infty \) and \(+\infty \) only as bounds but not as elements of unbounded real intervals leads to an exception-free calculus. Formulas for computing the lower and the upper bound of the interval operations including the dot product are independent of each other. On the computer high speed can and should be obtained by computing both bounds in parallel and simultaneously. Another increase of speed and accuracy can be obtained by computing dot products exactly. Arithmetic for closed real intervals even can be extended to open and half-open real intervals, to connected sets of real numbers. Also this leads to a calculus that is free of exceptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The number of atoms in the universe is less than \(10^{80}\).

References

  1. R.E. Moore, Interval Analysis (Prentice Hall Inc., Englewood Cliffs, New Jersey, 1966)

    MATH  Google Scholar 

  2. G. Alefeld, J. Herzberger, Einführung in die Intervallrechnung, Informatik 12. Bibliographisches Institut, Mannheim Wien Zürich (1974)

    Google Scholar 

  3. G. Alefeld, J. Herzberger, Introduction to Interval Computations (Academic Press, New York, 1983)

    MATH  Google Scholar 

  4. E.R. Hansen, Topics in Interval Analysis (Clarendon Press, Oxford, 1969)

    MATH  Google Scholar 

  5. R. Klatte, U. Kulisch, C. Lawo, M. Rauch, A. Wiethoff, C-XSC – A C++ Class Library for Extended Scientific Computing (Springer, Berlin, Heidelberg, New York, 1993). See also http://www2.math.uni-wuppertal.de/xsc/, http://www.xsc.de/

  6. R. Hammer, M. Hocks, U. Kulisch, D. Ratz, C++ Toolbox for Verified Computing: Basic Numerical Problems (Springer, Berlin, Heidelberg, New York, 1995)

    MATH  Google Scholar 

  7. Sun microsystems, interval arithmetic programming reference, in Fortran 95 (Sun Microsystems Inc., Palo Alto, 2000)

    Google Scholar 

  8. U. Kulisch, Advanced Arithmetic for the Digital Computer—Design of Arithmetic Units (Springer, 2002)

    Google Scholar 

  9. U. Kulisch, in Computer Arithmetic and Validity—Theory, Implementation, and Applications (de Gruyter, Berlin, 2008), 2nd edn (2013)

    Google Scholar 

  10. J.D. Pryce (Ed.), P1788, IEEE Standard for Interval Arithmetic, http://grouper.ieee.org/groups/1788/email/pdfOWdtH2mOd9.pdf

  11. R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-XSC – Sprachbeschreibung mit Beispielen (Springer, Berlin, Heidelberg New York, 1991). See also http://www2.math.uni-wuppertal.de/xsc/, http://www.xsc.de/

  12. R. Klatte, U. Kulisch, M. Neaga, D. Ratz, Ch. Ullrich, PASCAL-XSC – Language Reference with Examples (Springer, Berlin, Heidelberg, New York, 1992). See also http://www2.math.uni-wuppertal.de/~xsc/, http://www.xsc.de/. (Russian translation MIR, Moscow, 1995), 3rd edn, 2006. See also http://www2.math.uni-wuppertal.de/~xsc/, http://www.xsc.de/

  13. R. Hammer, M. Hocks, U. Kulisch, D. Ratz, in Numerical Toolbox for Verified Computing I: Basic Numerical Problems (PASCAL-XSC) (Springer, Berlin, Heidelberg, New York, 1993) (Russian translation MIR, Moscow, 2005)

    Google Scholar 

  14. IMACS and GAMM, IMACS-GAMM resolution on computer arithmetic. Math. Comput. Simul. 31, 297–298 (1989). Zeitschrift für Angewandte Mathematik und Mechanik70, 4 (1990)

    Google Scholar 

  15. GAMM-IMACS proposal for accurate floating-point vector arithmetic. GAMM Rundbrief 2, 9–16 (1993). Math. Comput. Simul. 35, IMACS, North Holland (1993). News of IMACS 35(4), 375–382 (1993)

    Google Scholar 

  16. The IFIP WG 2.5 - IEEE 754R letter, 4 Sept 2007

    Google Scholar 

  17. The IFIP WG 2.5 - IEEE P1788 letter, 9 Sept 2009

    Google Scholar 

  18. S.M. Rump, E. Kaucher, Small bounds for the solution of systems of linear equations, in Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), ed. by G. Alefeld, R. D. Grigorieff (Springer, Berlin, Heidelberg, Wien, 1980), pp. 157–164. Comput. Suppl. 2

    Google Scholar 

  19. Ch. Baumhof, A new VLSI vector arithmetic coprocessor for the PC. Institute of Electrical and Electronics Engineers (IEEE), in Proceedings of the 12th Symposium on Computer Arithmetic ARITH, Bath, England, July 19–21, 1995, ed. by S. Knowles, W.H. McAllister. (IEEE Computer Society Press, Piscataway, NJ, 1995), pp. 210–215

    Google Scholar 

  20. Ch. Baumhof, Ein Vektorarithmetik-Koprozessor in VLSI-Technik zur Unterstützung des Wissenschaftlichen Rechnens. Dissertation, Universität Karlsruhe (1996)

    Google Scholar 

  21. D. Biancolin, J. Koenig, Hardware Accelerator for Exact Dot Product (University of California, Berkeley, ASPIRE Laboratory, 2015)

    Google Scholar 

  22. U. Kulisch, G. Bohlender, High speed associative accumulation of floating-point numbers and floating-point intervals. Reliab. Comput. 23, 141–153 (2016)

    Google Scholar 

  23. IBM, IBM System/370 RPQ. High Accuracy Arithmetic, SA 22-7093-0, IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen) (1984)

    Google Scholar 

  24. IBM, IBM high-accuracy arithmetic subroutine library (ACRITH), IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen), 3rd edn (1986). 1. General Information Manual, GC 33-6163-02. 2. Program Description and User’s Guide, SC 33-6164-02. 3. Reference Summary, GX 33-9009-02

    Google Scholar 

  25. IBM, ACRITH–XSC: IBM High Accuracy Arithmetic—Extended Scientific Computation. Version 1, Release 1, IBM Deutschland GmbH (Department 3282, Schönaicher Strasse 220, D-71032 Böblingen), 1990. 1. General Information, GC33-6461-01. 2. Reference, SC33-6462-00. 3. Sample Programs, SC33-6463-00. 4. How To Use, SC33-6464-00. 5. Syntax Diagrams, SC33-6466-00

    Google Scholar 

  26. SIEMENS, ARITHMOS (BS 2000) Unterprogrammbibliothek für Hochpräzisionsarithmetik. Kurzbeschreibung, Tabellenheft, Benutzerhandbuch, SIEMENS AG, Bereich Datentechnik, Postfach 83 09 51, D-8000 München 83, Bestellnummer U2900-J-Z87-1, September 1986

    Google Scholar 

  27. INTEL, Intel Architecture Instruction Set Extensions Progamming Reference, 319433-017, Dec 2013, http://software.intel.com/en-us/file/319433-017pdf

  28. J.L. Gustafson, The End of Error (CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015)

    Google Scholar 

  29. U. Kulisch, Up-to-Date Interval Arithmetic: From Closed Intervals to Connected Sets of Real Numbers, ed. by R. Wyrzykowski, PPAM 2015, Part II, LNCS 9574, pp. 413–434 (2016)

    Google Scholar 

Download references

Acknowledgements

The author owes thanks to Goetz Alefeld and Gerd Bohlender for useful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich W. Kulisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulisch, U.W. (2020). High Speed Exception-Free Interval Arithmetic, from Closed and Bounded Real Intervals to Connected Sets of Real Numbers. In: Kosheleva, O., Shary, S., Xiang, G., Zapatrin, R. (eds) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence, vol 835. Springer, Cham. https://doi.org/10.1007/978-3-030-31041-7_18

Download citation

Publish with us

Policies and ethics