Skip to main content

Partial Solvers for Generalized Parity Games

  • Conference paper
  • First Online:
Reachability Problems (RP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11674))

Included in the following conference series:

Abstract

Parity games have been broadly studied in recent years for their applications to controller synthesis and verification. In practice, partial solvers for parity games that execute in polynomial time, while incomplete, can solve most games in publicly available benchmark suites. In this paper, we combine those partial solvers with the classical algorithm for parity games due to Zielonka. We also extend partial solvers to generalized parity games that are games with conjunction of parity objectives. We have implemented those algorithms and evaluated them on a large set of benchmarks proposed in the last LTL synthesis competition.

Work partially supported by the PDR project Subgame perfection in graph games (F.R.S.-FNRS), the ARC project Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), the EOS project Verifying Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), the COST Action 16228 GAMENET (European Cooperation in Science and Technology). The full version of this article is available at https://arxiv.org/abs/1907.06913.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This condition guarantees that there is no deadlock.

  2. 2.

    A better algorithm in \(O(|V|^2)\) for Büchi objectives is proposed in [5], and in \(O(k\cdot |V|^2)\) for generalized Büchi objectives in [4].

  3. 3.

    This result is obtained with a classical reduction to games with Büchi objectives [2].

  4. 4.

    This algorithm is referred to as “the classical algorithm” in [6].

  5. 5.

    The variant with safety objectives.

  6. 6.

    The tool we implemented to realize this translation can be fetched from https://github.com/gaperez64/tlsf2gpg.

References

  1. Ah-Fat, P., Huth, M.: Partial solvers for parity games: effective polynomial-time composition. In: GandALF Proceedings. EPTCS, vol. 226, pp. 1–15 (2016). https://doi.org/10.4204/EPTCS.226.1

    Article  MathSciNet  Google Scholar 

  2. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Jobstmann, B.: Robustness in the presence of liveness. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 410–424. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_36

    Chapter  Google Scholar 

  3. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. In: STOC Proceedings, pp. 252–263. ACM (2017). https://doi.org/10.1145/3055399.3055409

  4. Chatterjee, K., Dvorák, W., Henzinger, M., Loitzenbauer, V.: Conditionally optimal algorithms for generalized Büchi games. In: MFCS Proceedings. LIPIcs, vol. 58, pp. 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.25

  5. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating büchi games and maximal end-component decomposition. J. ACM 61(3), 15:1–15:40 (2014). https://doi.org/10.1145/2597631

    Article  Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0_12

    Chapter  Google Scholar 

  7. Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_16

    Chapter  Google Scholar 

  8. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_2

    Chapter  MATH  Google Scholar 

  9. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS Proceedings, pp. 368–377. IEEE Computer Society (1991). https://doi.org/10.1109/SFCS.1991.185392

  10. Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis. STTT 15(5-6), 541–561 (2013). https://doi.org/10.1007/s10009-012-0222-5

    Article  Google Scholar 

  11. Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9_15

    Chapter  Google Scholar 

  12. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4

    Book  MATH  Google Scholar 

  13. Huth, M., Kuo, J.H.-P., Piterman, N.: Fatal attractors in parity games. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5_3

    Chapter  Google Scholar 

  14. Huth, M., Kuo, J.H.-P., Piterman, N.: Static analysis of parity games: alternating reachability under parity. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS, vol. 9560, pp. 159–177. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27810-0_8

    Chapter  Google Scholar 

  15. Jacobs, S., et al.: The 5th reactive synthesis competition (SYNTCOMP 2018): Benchmarks, participants & results. CoRR abs/1904.07736 (2019). http://arxiv.org/abs/1904.07736

  16. Jurdzinski, M.: Deciding the winner in parity games is in UP \(\cap \) co-UP. Inf. Process. Lett. 68(3), 119–124 (1998). https://doi.org/10.1016/S0020-0190(98)00150-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)

    Article  MathSciNet  Google Scholar 

  18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL Proceedings, pp. 179–190. ACM Press (1989). https://doi.org/10.1145/75277.75293

  19. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998). https://doi.org/10.1016/S0304-3975(98)00009-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Bruyère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruyère, V., Pérez, G.A., Raskin, JF., Tamines, C. (2019). Partial Solvers for Generalized Parity Games. In: Filiot, E., Jungers, R., Potapov, I. (eds) Reachability Problems. RP 2019. Lecture Notes in Computer Science(), vol 11674. Springer, Cham. https://doi.org/10.1007/978-3-030-30806-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30806-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30805-6

  • Online ISBN: 978-3-030-30806-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics