Skip to main content

Lung Cancer: Molecular Markers of Occupational Carcinogens

  • Chapter
  • First Online:
Occupational Cancers

Abstract

Identification of exposure-specific molecular markers for occupationally derived lung cancer is influenced by several confounding factors, such as tobacco smoking and environmental exposures. Specific markers can be detected as gene products either in target tissues, such as lung or tumor tissue, or in surrogate tissues obtained with less invasive operations, such as blood, effusion fluid, sputum, bronchoalveolar lavage fluid, or in exhaled breath condensate. Asbestos-specific chromosomal and genetic alterations in lung cancer have been described in several chromosomes, e.g., 2p, 3p, 9, and 19p. Allelic imbalance or loss at 2p16, 9q33.1, and 19p13 has shown dose–response with asbestos exposure and can recognize asbestos-related lung cancer with high specificity. Several alterations, e.g., G to T transversion mutations of TP53, are likely caused by interaction of tobacco carcinogens and asbestos. Unique epigenetic miRNA and DNA methylome profiles have been associated with asbestos-related lung cancer. The development of clinically useful markers requires validations and the standardization of detection methods as well as an efficient combination of markers for molecular assays.

Sisko Anttila updated for the 2nd edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talaska G, Roh J, Zhou Q. Molecular biomarkers of occupational lung cancer. Yonsei Med J. 1996;37(1):18.

    Article  Google Scholar 

  2. Hayes SA, Haefliger S, Harris B, et al. Exhaled breath condensate for lung cancer protein analysis: a review of methods and biomarkers. J Breath Res. 2016;10:034001.

    Article  PubMed  CAS  Google Scholar 

  3. Youssef O, Sarhadi VK, Armengol G, et al. Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers—a mini-review. Genes Chromosomes Cancer. 2016;55:905–14.

    Article  CAS  PubMed  Google Scholar 

  4. Youssef O, Knuuttila A, Piirilä P, et al. Presence of cancer-associated mutations in exhaled breath condensates of healthy individuals by next generation sequencing. Oncotarget. 2017;8:18166–76.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kettunen E, Aavikko M, Nymark P, et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br J Cancer. 2009;100:1336–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pylkkänen L, Wolff H, Stjernvall T, et al. Reduced Fhit protein expression and loss of heterozygosity at FHIT gene in tumours from smoking and asbestos-exposed lung cancer patients. Int J Oncol. 2002;20:285–90.

    PubMed  Google Scholar 

  7. Nelson H, Wiencke J, Gunn L, Wain J, Christiani D, Kelsey K. Chromosome 3p14 alterations in lung cancer: evidence that FHIT exon deletion is a target of tobacco carcinogens and asbestos. Cancer Res. 1998;58:1804–7.

    CAS  PubMed  Google Scholar 

  8. Marsit CJ, Hasegawa M, Hirao T, et al. Loss of heterozygosity of chromosome 3p21 is associated with mutant TP53 and better patient survival in non-small-cell lung cancer. Cancer Res. 2004;64:8702–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nymark P, Wikman H, Ruosaari S, et al. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res. 2006;66:5737–43.

    Article  CAS  PubMed  Google Scholar 

  10. Andujar P, Wang J, Descatha A, et al. p16INK4A inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer. 2010;67:23–30.

    Article  PubMed  Google Scholar 

  11. Nymark P, Kettunen E, Aavikko M, et al. Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer. Clin Cancer Res. 2009;15:468–75.

    Article  CAS  PubMed  Google Scholar 

  12. Dopp E, Schuler M, Schiffmann D, Eastmond DA. Induction of micronuclei, hyperdiploidy and chromosomal breakage affecting the centric/pericentric regions of chromosomes 1 and 9 in human amniotic fluid cells after treatment with asbestos and ceramic fibers. Mutat Res/Fundam Mol Mech Mutagen. 1997;377:77–87.

    Article  CAS  Google Scholar 

  13. Suzuki M, Piao C, Zhao Y, Hei T. Karyotype analysis of tumorigenic human bronchial epithelial cells transformed by chrysolite asbestos using chemically induced premature chromosome condensation technique. Int J Mol Med. 2001;8:43–7.

    CAS  PubMed  Google Scholar 

  14. Ruosaari S, Nymark P, Aavikko M, et al. Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis. 2008;29:913–7.

    Article  CAS  PubMed  Google Scholar 

  15. Jensen C, Jensen L, Rieder C, Cole R, Ault J. Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis. Carcinogenesis. 1996;17:2013–21.

    Article  CAS  PubMed  Google Scholar 

  16. Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009;153:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaurand M. Mechanisms of fiber-induced genotoxicity. Environ Health Perspect. 1997;105:1073–84.

    PubMed  PubMed Central  Google Scholar 

  18. Andujar P, Pairon J-C, Renier A, et al. Differential mutation profiles and similar intronic TP53 polymorphisms in asbestos-related lung cancer and pleural mesothelioma. Mutagenesis. 2013;28:323–31.

    Article  CAS  PubMed  Google Scholar 

  19. Guinee DG Jr, Travis WD, Trivers GE, et al. Gender comparisons in human lung cancer: analysis of p53 mutations, anti-p53 serum antibodies and C-erbB-2 expression. Carcinogenesis. 1995;16:993–1002.

    Article  CAS  PubMed  Google Scholar 

  20. Brandt-Rauf P, Smith S, Hemminki K, et al. Serum oncoproteins and growth factors in asbestosis and silicosis patients. Int J Cancer. 1992;50:881–5.

    Article  CAS  PubMed  Google Scholar 

  21. Helmig S, Schneider J. Oncogene and tumor-suppressor gene products as serum biomarkers in occupational-derived lung cancer. Expert Rev Mol Diagn. 2007;7:555–68.

    Article  CAS  PubMed  Google Scholar 

  22. Nelson HH, Christiani DC, Wiencke JK, Mark EJ, Wain JC, Kelsey KT. K-ras mutation and occupational asbestos exposure in lung adenocarcinoma: asbestos-related cancer without asbestosis. Cancer Res. 1999;59:4570–3.

    CAS  PubMed  Google Scholar 

  23. Nymark P, Guled M, Borze I, et al. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer. 2011;50:585–97.

    Article  CAS  PubMed  Google Scholar 

  24. Bononi I, Comar M, Puozzo A, et al. Circulating microRNAs found dysregulated in ex-exposed asbestos workers and pleural mesothelioma patients as potential new biomarkers. Oncotarget. 2016;7:82700–11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kettunen E, Hernandez-Vargas H, Cros M-P, et al. Asbestos-associated genome-wide DNA methylation changes in lung cancer. Int J Cancer. 2017;141:2014–29.

    Article  CAS  PubMed  Google Scholar 

  26. Öner D, Ghosh M, Moisse M, et al. Global and gene-specific DNA methylation effects of different asbestos fibres on human bronchial epithelial cells. Environ Int. 2018;115:301–11.

    Article  PubMed  CAS  Google Scholar 

  27. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers—a different disease. Nat Rev Cancer. 2007;7:778–90.

    Article  CAS  PubMed  Google Scholar 

  28. Lange JH, Hoskins J, Mastrangelo G. Smoking rates in asbestos workers. Occup Med. 2006;56:581.

    Article  Google Scholar 

  29. Chapman AM, Sun KY, Ruestow P, et al. Lung cancer mutation profile of EGFR, ALK, and KRAS: meta-analysis and comparison of never and ever smokers. Lung Cancer. 2016;102:122–34.

    Article  PubMed  Google Scholar 

  30. Lee YJ, Kim J-H, Kim SK, et al. Lung cancer in never smokers: change of a mindset in the molecular era. Lung Cancer. 2011;72:9–15.

    Article  PubMed  Google Scholar 

  31. Arcila ME, Nafa K, Chaft JE, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beau-Faller M, Prim N, Ruppert AM, et al. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network. Ann Oncol. 2014;25:126–31.

    Article  CAS  PubMed  Google Scholar 

  33. Tseng J-S, Wang C-L, Yang T-Y, et al. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma. Lung Cancer. 2015;90:472–6.

    Article  PubMed  Google Scholar 

  34. Paris C, Do P, Mastroianni B, et al. Association between lung cancer somatic mutations and occupational exposure in never-smokers. Eur Respir J. 2017;50:1700716.

    Article  PubMed  CAS  Google Scholar 

  35. Ruano-Ravina A, Torres-Durán M, Kelsey K, et al. Residential radon, EGFR mutations and ALK alterations in never-smoking lung cancer cases. Eur Respir J. 2016;48:1462–70.

    Article  CAS  PubMed  Google Scholar 

  36. Inamura K, Ninomiya H, Nomura K, et al. Combined effects of asbestos and cigarette smoke on the development of lung adenocarcinoma: different carcinogens may cause different genomic changes. Oncol Rep. 2014;32:475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pfeifer G, Denissenko M, Olivier M, Tretyakova N, Hecht S, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002;21:7435–51.

    Article  CAS  PubMed  Google Scholar 

  38. Nymark P, Wikman H, Hienonen-Kempas T, Anttila S. Molecular and genetic changes in asbestos-related lung cancer. Cancer Lett. 2008;265:1–15.

    Article  CAS  PubMed  Google Scholar 

  39. Wikman H, Ruosaari S, Nymark P, et al. Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene. 2007;26:4730–7.

    Article  CAS  PubMed  Google Scholar 

  40. Lindholm P, Salmenkivi K, Vauhkonen H, et al. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007;119:46.

    Article  CAS  PubMed  Google Scholar 

  41. Taniguchi T, Karnan S, Fukui T, et al. Genomic profiling of malignant pleural mesothelioma with array-based comparative genomic hybridization shows frequent non-random chromosomal alteration regions including JUN amplification on 1p32. Cancer Sci. 2007;98:438–46.

    Article  CAS  PubMed  Google Scholar 

  42. Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2012;43:1022–5.

    Article  CAS  Google Scholar 

  43. Leblay N, Leprêtre F, Le Stang N, et al. BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J Thorac Oncol. 2017;12:724–33.

    Article  PubMed  Google Scholar 

  44. Righi L, Duregon E, Vatrano S, et al. BRCA1-associated protein 1 (BAP1) immunohistochemical expression as a diagnostic tool in malignant pleural mesothelioma classification: a large retrospective study. J Thorac Oncol. 2016;11:2006–17.

    Article  PubMed  Google Scholar 

  45. Betti M, Aspesi A, Ferrante D, et al. Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes. Genes Chromosomes Cancer. 2018;57:573–83.

    Article  CAS  PubMed  Google Scholar 

  46. Owen D, Sheffield BS, Ionescu D, Churg A. Loss of BRCA1-associated protein 1 (BAP1) expression is rare in non-small cell lung cancer. Hum Pathol. 2017;60:82–5.

    Article  CAS  PubMed  Google Scholar 

  47. Christensen BC, Godleski JJ, Marsit CJ, et al. Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis. 2008;29:1555–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sekido Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci. 2010;101:1–6.

    Article  CAS  PubMed  Google Scholar 

  49. Wong L, Zhou J, Anderson D, Kratzke RA. Inactivation of p16INK4a expression in malignant mesothelioma by methylation. Lung Cancer. 2002;38:131–6.

    Article  PubMed  Google Scholar 

  50. Dammann R, Strunnikova M, Schagdarsurengin U, et al. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer. 2005;41:1223–36.

    Article  CAS  PubMed  Google Scholar 

  51. Kraunz KS, Nelson HH, Lemos M, Godleski JJ, Wiencke JK, Kelsey KT. Homozygous deletion of p16/INK4a and tobacco carcinogen exposure in nonsmall cell lung cancer. Int J Cancer. 2006;118:1364–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mossman BT, Lippmann M, et al. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health Pt B. 2011;14(1–4):76–121.

    Article  CAS  Google Scholar 

  53. Nymark P, Aavikko M, Mäkilä J, Ruosaari S, Hienonen-Kempas T, Wikman H, Salmenkivi K, Pirinen R, Karjalainen A, Vanhala E, Kuosma E, Anttila S, Kettunen E. Accumulation of genomic alterations in 2p16, 9q33.1 and 19p13 in lung tumours of asbestos-exposed patients. Mol Oncol. 2013;7(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  54. Ivanov SV, Miller J, Lucito R, et al. Genomic events associated with progression of pleural malignant mesothelioma. Int J Cancer. 2009;124:589–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nymark P, Lindholm P, Korpela M, et al. Specific gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics. 2007;8:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Borczuk AC, Jianming P, Taub RN, et al. Genome-wide analysis of abdominal and pleural mesothelioma with DNA arrays reveals both common and distinct regions of copy number alterations. Cancer Biol Ther. 2016;17:328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jean D, Thomas E, Manié E, et al. Syntenic relationships between genomic profiles of fiber-induced murine and human malignant mesothelioma. Am J Pathol. 2011;178:881–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Betti M, Casalone E, Ferrante D, et al. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett. 2017;405:38–45.

    Article  CAS  PubMed  Google Scholar 

  59. Matsuoka M, Igisu H, Morimoto Y. Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers. Environ Health Perspect. 2003;111:509–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mishra A, Liu J, Brody A, Morris G. Inhaled asbestos fibers induce p53 expression in the rat lung. Am J Respir Cell Mol Biol. 1997;16:479–85.

    Article  CAS  PubMed  Google Scholar 

  61. Nuorva K, Mäkitaro R, Huhti E, et al. p53 protein accumulation in lung carcinomas of patients exposed to asbestos and tobacco smoke. Am J Respir Crit Care Med. 1994;150:528–33.

    Article  CAS  PubMed  Google Scholar 

  62. Pääkkö P, Rämet M, Vähäkangas K, et al. Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells. Apoptosis. 1998;3:203–12.

    Article  PubMed  Google Scholar 

  63. Liu B, Fu D, Miao Q, Wang H, You B. p53 gene mutations in asbestos associated cancers. Biomed Environ Sci. 1998;11:226–32.

    CAS  PubMed  Google Scholar 

  64. Panduri V, Surapureddi S, Soberanes S, Weitzman SA, Chandel N, Kamp DW. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol. 2006;34:443–52.

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Christiani D, Wiencke J, et al. Mutations in the p53 gene in lung cancer are associated with cigarette smoking and asbestos exposure. Cancer Epidemiol Biomarkers Prev. 1995;4:543–8.

    CAS  PubMed  Google Scholar 

  66. Husgafvel-Pursiainen K, Karjalainen A, Kannio A, et al. Lung cancer and past occupational exposure to asbestos. Role of p53 and K-ras mutations. Am J Respir Cell Mol Biol. 1999;20:667–74.

    Article  CAS  PubMed  Google Scholar 

  67. Lin F, Liu Y, Liu Y, Keshava N, Li S. Crocidolite induces cell transformation and p53 gene mutation in BALB/c-3T3 cells. Teratog Carcinog Mutagen. 2000;20:273–81.

    Article  CAS  PubMed  Google Scholar 

  68. DeMarini DM, Landi S, Tian D, et al. Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res. 2001;61:6679–81.

    CAS  PubMed  Google Scholar 

  69. Moyer V, Cistulli C, Vaslet C, Kane A. Oxygen radicals and asbestos carcinogenesis. Environ Health Perspect. 1994;102:131–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Loli P, Topinka J, Georgiadis P, et al. Benzo[a]pyrene-enhanced mutagenesis by asbestos in the lung of lambda-lacI transgenic rats. Mutat Res. 2004;553:79–90.

    Article  CAS  PubMed  Google Scholar 

  71. Hei T, Wu L, Piao C. Malignant transformation of immortalized human bronchial epithelial cells by asbestos fibers. Environ Health Perspect. 1997;105:1085–8.

    PubMed  PubMed Central  Google Scholar 

  72. Partanen R, Hemminki K, Koskinen H, Luo J, Carney W, Brandt-Rauf P. The detection of increased amounts of the extracellular domain of the epidermal growth factor receptor in serum during carcinogenesis in asbestosis patients. J Occup Med. 1994;36:1324–8.

    Article  CAS  PubMed  Google Scholar 

  73. Schneider J, Presek P, Braun A, et al. p53 protein, EGF receptor, and anti-p53 antibodies in serum from patients with occupationally derived lung cancer. Br J Cancer. 1999;80:1987–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wild C, Ridanpää M, Anttila S, et al. p53 antibodies in the sera of lung cancer patients: comparison with p53 mutation in the tumour tissue. Int J Cancer. 1995;64:176–81.

    Article  CAS  PubMed  Google Scholar 

  75. Wright CM, Larsen JE, Hayward NK, et al. ADAM28: a potential oncogene involved in asbestos-related lung adenocarcinomas. Genes Chromosomes Cancer. 2010;49:688–98.

    Article  CAS  PubMed  Google Scholar 

  76. Gee GV, Koestler DC, Christensen BC, et al. Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. Int J Cancer. 2010;127:2859–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guled M, Lahti L, Lindholm PM, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma—a miRNA microarray analysis. Genes Chromosomes Cancer. 2009;48:615–23.

    Article  CAS  PubMed  Google Scholar 

  78. Yasuda M, Hanagiri T, Shigematsu Y, et al. Identification of a tumour associated antigen in lung cancer patients with asbestos exposure. Anticancer Res. 2010;30:2631–9.

    CAS  PubMed  Google Scholar 

  79. Rostila A, Puustinen A, Toljamo T, et al. Peroxiredoxins and tropomyosins as plasma biomarkers for lung cancer and asbestos exposure. Lung Cancer. 2012;77:450–9.

    Article  PubMed  Google Scholar 

  80. Matsuzaki H, Kumagai-Takei N, Lee S, et al. Search for biomarkers of asbestos exposure and asbestos-induced cancers in investigations of the immunological effects of asbestos. Environ Health Prev Med. 2017;22:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kumagai-Takei N, Nishimura Y, Maeda M, et al. Functional properties of CD8+ lymphocytes in patients with pleural plaque and malignant mesothelioma. J Immunol Res. 2014;2014:670140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Maeda M, Nishimura Y, Hayashi H, et al. Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients. Am J Respir Cell Mol Biol. 2011;45:795–803.

    Article  CAS  PubMed  Google Scholar 

  83. Nishimura Y, Maeda M, Kumagai-Takei N, et al. Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med. 2013;18:198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nair VS, Maeda LS, Ioannidis JPA. Clinical outcome prediction by microRNAs in human cancer: a systematic review. JNCI. 2012;104:528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Santarelli L, Gaetani S, Monaco F, et al. Four-miRNA signature to identify asbestos-related lung malignancies. Cancer Epidemiol Biomarkers Prev. 2019;28:119–26.

    Article  PubMed  Google Scholar 

  86. Christensen B, Houseman E, Godleski J, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 2009;69:227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martinez VD, Buys TPH, Adonis M, et al. Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br J Cancer. 2010;103:1277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ali AHK, Kondo K, Namura T, et al. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog. 2011;50:89–99.

    Article  CAS  PubMed  Google Scholar 

  89. Kondo K, Takahashi Y, Hirose Y, et al. The reduced expression and aberrant methylation of p16INK4a in chromate workers with lung cancer. Lung Cancer. 2006;53:295–302.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was financially supported by the Jalmari and Rauha Ahokas Foundation, Helsinki (PN), and Helsinki and Uusimaa Health Care District Research Funds (SA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisko Anttila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nymark, P.E.H., Anttila, S. (2020). Lung Cancer: Molecular Markers of Occupational Carcinogens. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-30766-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30766-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30765-3

  • Online ISBN: 978-3-030-30766-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics