Skip to main content

Wood Decomposition

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Dead wood is an extremely abundant form of organic matter in some streams. It plays important ecological roles, as it shapes stream channels, retains sediments and litter, and provides food and substrate for organisms, thus contributing to the overall carbon flux in streams. Wood decomposition can be determined by following the mass loss of tagged wood pieces. This chapter presents two alternative approaches: the first based on branches to calculate the total mass of wood decomposed in a reach and the second one using commercially available tongue depressors. In both cases, wood pieces are air-dried, weighed and tied to rebars or roots in streams, and retrieved several months later to determine the ash-free dry mass remaining. Decomposition rate is computed by assuming a negative exponential mass loss model. Reach-level decomposition can be estimated from the breakdown rate of standard wood pieces, if the surface-to-volume ratio of all wood pieces in the reach is measured. Wood and leaf decomposition appear to be driven by similar environmental factors, suggesting that the former can serve as a convenient proxy for the latter, for instance in functional assessments of stream ecosystem integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aristi, I., Ramon Diez, J., Larranaga, A., Navarro-Ortega, A., Barcelo, D., & Elosegi, A. (2012). Assessing the effects of multiple stressors on the functioning of Mediterranean rivers using poplar wood breakdown. Science of the Total Environment, 440, 272–279.

    Article  CAS  Google Scholar 

  • Arroita, M., Aristi, I., Flores, L., Larranaga, A., Diez, J., Mora, J., Romaní, A. M., & Elosegi, A. (2012). The use of wooden sticks to assess stream ecosystem functioning: Comparison with leaf breakdown rates. Science of the Total Environment, 440, 115–122.

    Article  CAS  Google Scholar 

  • Aumen, N.G. (1985). Characterization of lignocellulose decomposition in stream wood samples using 14 C and 15N techniques. Ph.D. dissertation. Oregon State University.

    Google Scholar 

  • Aumen, N. G., Bottomley, P. J., Ward, G. M., & Gregory, S. V. (1983). Microbial decomposition of wood in streams: Distribution of microflora and factors affecting [14C] lignocellulose mineralization. Applied and Environmental Microbiology, 46, 1409–1416.

    Article  CAS  Google Scholar 

  • Bilby, R. E. (2003). Decomposition and nutrient dynamics of wood in streams and rivers. In S. V. Gregory, K. L. Boyer, & A. M. Gurnell (Eds.), Ecology and management of wood in world rivers (pp. 135–147). Bethesda: American Fisheries Society.

    Google Scholar 

  • Blanchette, R. A., Iiyama, K., Abad, A. R., & Cease, K. R. (1991). Ultrastructure of ancient buried wood from Japan. Holzforschung, 45, 161–168.

    Article  CAS  Google Scholar 

  • Chen, X. Y., Wei, X. H., & Scherer, R. (2005). Influence of wildfire and harvest on biomass, carbon pool, and decomposition of large woody debris in forested streams of southern interior British Columbia. Forest Ecology and Management, 208, 101–114.

    Article  Google Scholar 

  • Collier, K. J. (2014). Wood decay rates and macroinvertebrate community structure along contrasting human pressure gradients (Waikato, New Zealand). New Zealand Journal of Marine and Freshwater Research, 48, 97–111.

    Article  CAS  Google Scholar 

  • Diez, J., Elosegi, A., Chauvet, E., & Pozo, J. (2002). Breakdown of wood in the Aguera stream. Freshwater Biology, 47, 2205–2215.

    Article  Google Scholar 

  • Eggert, S. L., & Wallace, J. B. (2003). Litter breakdown and invertebrate detritivores in a resource-depleted Appalachian stream. Archiv für Hydrobiologie, 156, 315–338.

    Article  Google Scholar 

  • Ellis, L. M., Molles, M. C., & Crawford, C. S. (1999). Influence of experimental flooding on litter dynamics in a Rio Grande riparian forest, New Mexico. Restoration Ecology, 7, 193–204.

    Article  Google Scholar 

  • Elosegi, A., Díez, J., & Pozo, J. (2007). Contribution of dead wood to the carbon flux in forested streams. Earth Surface Processes and Landforms, 32, 1219–1228.

    Article  Google Scholar 

  • Estevez, E., Rodriguez-Castillo, T., Alvarez-Cabria, M., Penas, F. J., González-Ferreras, A. M., Lezcano, M., & Barquín, J. (2017). Analysis of structural and functional indicators for assessing the health state of mountain streams. Ecological Indicators, 72, 553–564.

    Article  Google Scholar 

  • Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E., & Graça, M. A. S. (2015). A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews, 90, 669–688.

    Article  Google Scholar 

  • Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guerold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis. Environmental Pollution, 210, 261–270.

    Article  CAS  Google Scholar 

  • France, R., Culbert, H., Freeborough, C., & Peters, R. (1997). Leaching and early mass loss of boreal leaves and wood in oligotrophic water. Hydrobiologia, 345, 209–214.

    Article  Google Scholar 

  • Fritz, K. M., Feminella, J. W., Colson, C., Lockaby, B. G., Governo, R., & Rummer, R. B. (2006). Biomass and decay rates of roots and detritus in sediments of intermittent coastal plain streams. Hydrobiologia, 556, 265–277.

    Article  Google Scholar 

  • Fuss, C. L., & Smock, L. A. (1996). Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwater Biology, 36, 339–349.

    Article  Google Scholar 

  • Golladay, S. W., & Sinsabaugh, R. L. (1991). Biofilm development on leaf and wood surfaces in a Boreal river. Freshwater Biology, 25, 437–450.

    Article  CAS  Google Scholar 

  • Golladay, S. W., & Webster, J. R. (1988). Effects of clear-cut logging on wood breakdown in Appalachian mountain streams. American Midland Naturalist, 119, 143–155.

    Article  Google Scholar 

  • Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkamper, G. W., Cromack, K., Jr., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302.

    Article  Google Scholar 

  • Hoffman, A., & Hering, D. (2000). Wood-associated macroinvertebrate fauna in Central European streams. International Review of Hydrobiology, 85, 25–48.

    Article  Google Scholar 

  • Hyatt, T. L., & Naiman, R. J. (2001). The residence time of large woody debris in the Queets River, Washington, USA. Ecological Applications, 11, 191–202.

    Article  Google Scholar 

  • Maser, C., & Sedell, J. R. (1994). From the forest to the sea. The ecology of wood in streams, rivers, estuaries, and oceans. Delray Beach: St Lucie.

    Google Scholar 

  • McTammany, M. E., Benfield, E. F., & Webster, J. R. (2008). Effects of agriculture on wood breakdown and microbial biofilm respiration in southern Appalachian streams. Freshwater Biology, 53, 842–854.

    Article  CAS  Google Scholar 

  • Melillo, J. M., Naiman, R. J., Aber, J. D., & Eshleman, K. N. (1983). The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia, 58, 281–285.

    Article  Google Scholar 

  • Monroy, S., Menéndez, M., Basaguren, A., Pérez, J., Elosegi, A., & Pozo, J. (2016). Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain ). Science of the Total Environment, 573, 1450–1459.

    Article  CAS  Google Scholar 

  • Niyogi, D. K., Harding, J. S., & Simon, K. S. (2013). Organic matter breakdown as a measure of stream health in New Zealand streams affected by acid mine drainage. Ecological Indicators, 24, 510–517.

    Article  CAS  Google Scholar 

  • Noetzli, K., Boell, A., Graf, F., Sieber, T. N., & Holdenrieder, O. (2008). Influence of decay fungi, construction characteristics, and environmental conditions on the quality of wooden check-dams. Forests Products Journal, 58, 72–79.

    Google Scholar 

  • Petersen, R. C., & Cummins, K. W. (1974). Leaf processing in a woodland stream. Freshwater Biology, 4, 343-368.

    Google Scholar 

  • Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052–2077.

    Article  Google Scholar 

  • Spänhoff, B., & Meyer, E. I. (2004). Breakdown rates of wood in streams. Journal of the North American Benthological Society, 23, 189–197.

    Article  Google Scholar 

  • Spänhoff, B., Alecke, C., & Meyer, E. I. (2001). Simple method for rating the decay stages of submerged woody debris. Journal of the North American Benthological Society, 20, 385–394.

    Article  Google Scholar 

  • Tank, J. L., & Webster, J. R. (1998). Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology, 79, 2168–2179.

    Article  Google Scholar 

  • Triska, F. J., & Cromack, K. C. (1980). The role of wood debris in forests and streams. In R. H. Waring (Ed.), Forest: Fresh perspectives from ecosystem analysis (pp. 171–1900). Corvallis: O.S.U. Press.

    Google Scholar 

  • Webster, J. R., Benfield, E. F., Ehrman, T. P., Schaeffer, M. A., Tank, J. L., Hutchens, J. J., & D’Angelo, D. J. (1999). What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biology, 41, 687–705.

    Article  Google Scholar 

  • Wohl, E. (2017). Geomorphology bridging the gaps: An overview of wood across time and space in diverse rivers. Geomorphology, 279, 3–26.

    Article  Google Scholar 

  • Wold, A. K. F., & Hershey, A. E. (1999). Effects of salmon carcass decomposition on biofilm growth and wood decomposition. Canadian Journal of Fisheries and Aquatic Sciences, 56, 767–773.

    Article  Google Scholar 

  • Zeikus, J. G. (1980). Fate of lignin and related aromatic substrates in anaerobic environments. In T. H. Kirk, T. Higuchi, & H. M. Chang (Eds.), Lignin, Biodegradation: Microbiology, Chemistry and potential Applications (pp. 101–109). Boca Raton: C.R.C. Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Elosegi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elosegi, A., Arroita, M., Solagaistua, L. (2020). Wood Decomposition. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_8

Download citation

Publish with us

Policies and ethics