Skip to main content

Direct Acoustic Obstacle Scattering

  • Chapter
  • First Online:
Inverse Acoustic and Electromagnetic Scattering Theory

Part of the book series: Applied Mathematical Sciences ((AMS,volume 93))

Abstract

This chapter is devoted to the solution of the direct obstacle scattering problem for acoustic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.

    MATH  Google Scholar 

  2. Atkinson, K.E.: The numerical solution of Laplace’s equation in three dimensions. SIAM J. Numer. Anal. 19, 263–274 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge Univ. Press, Cambridge 1997.

    Book  MATH  Google Scholar 

  4. Bourgeois, L., and Haddar, H.: Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging 4, 19–38, (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. Brakhage, H., and Werner, P.: Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandler-Wilde, S. N., Graham, I. G., Langdon, S., and Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustic scattering. Jour. Integral Equations and Appl. 21, 229–279 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. Colton, D.: Partial Differential Equations. Dover Publications, New York 2004.

    MATH  Google Scholar 

  8. Colton, D., and Kirsch, A.: Dense sets and far field patterns in acoustic wave propagation. SIAM J. Math. Anal. 15, 996–1006 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.

    Book  MATH  Google Scholar 

  11. Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506–523 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham 1963.

    MATH  Google Scholar 

  13. Davis, P.J., and Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York 1975.

    MATH  Google Scholar 

  14. Duruflé, M., Haddar, H., and Joly, P.: High order generalized impedance boundary conditions in electromagnetic scattering problems. Comptes Rendus Physique 7, 533–542 (2006).

    Article  Google Scholar 

  15. Elliott, D.: Sigmoidal transformations and the trapezoidal rule. ANZIAM Jour. B 40, E77–E137 (1998).

    Google Scholar 

  16. Elliott, D. and Prössdorf, S.: An algorithm for the approximate solution of integral equations of Mellin type. Numer. Math. 70, 427–452 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganesh, M., and Graham, I. G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. Gieseke, B.: Zum Dirichletschen Prinzip für selbstadjungierte elliptische Differentialoperatoren. Math. Z. 68, 54–62 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham, I. G., and Sloan, I. H.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in I R 3. Numer. Math. 92, 289–323 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston 1985.

    MATH  Google Scholar 

  21. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin 1985.

    Book  MATH  Google Scholar 

  22. Haddar, H., Joly, P., and Nguyen, H.M.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15, 1273–1300 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. Hähner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213–224 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  24. Hähner, P.: Eindeutigkeits- und Regularitätssätze für Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Göttingen 1990.

    Google Scholar 

  25. Hartman, P., and Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961).

    Article  MATH  Google Scholar 

  26. Hettlich, F.: Die Integralgleichungsmethode bei Streuung an Körpern mit einer dünnen Schicht. Diplomarbeit, Göttingen 1989.

    Google Scholar 

  27. Hsiao, G.C., and Wendland, W. L.: Boundary Integral Equations. Springer, Berlin 2008.

    Book  MATH  Google Scholar 

  28. Jeon, Y.: A Nyström method for boundary integral equations in domains with a piecewise smooth boundary. Jour. Integral Equations Appl. 5, 221–242 (1993).

    Article  MATH  Google Scholar 

  29. Jörgens, K.: Lineare Integraloperatoren. Teubner–Verlag, Stuttgart 1970.

    Book  MATH  Google Scholar 

  30. Kersten, H.: Grenz- und Sprungrelationen für Potentiale mit quadratsummierbarer Dichte. Resultate d. Math. 3, 17–24 (1980).

    Article  MATH  Google Scholar 

  31. Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  32. Kirsch, A.: Properties of far field operators in acoustic scattering. Math. Meth. in the Appl. Sci. 11, 773–787 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  33. Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirsch, A., and Hettlich, F.: The Mathematical Theory of Time-Harmonic Maxwell’s Equations. Springer, New York 2015.

    Book  MATH  Google Scholar 

  35. Kleinman, R., and Martin, P.: On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48, 307–325 (1988).

    Article  MathSciNet  Google Scholar 

  36. Kress, R.: Ein ableitungsfreies Restglied für die trigonometrische Interpolation periodischer analytischer Funktionen. Numer. Math. 16, 389–396 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  37. Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Q. Jl. Mech. appl. Math. 38, 323–341 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  38. Kress, R.: On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation. Math. Meth. in the Appl. Sci. 9, 335–341 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  39. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  40. Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Mathl. Comput. Modelling 15, 229–243 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  41. Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comp. Appl. Math. 61, 345–360 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  42. Kress, R.: Linear Integral Equations. 3rd ed, Springer, Berlin 2014.

    Book  MATH  Google Scholar 

  43. Kress, R., and Roach, G.: Transmission problems for the Helmholtz equation. Jour. Math. Phys. 19 1433–1437 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  44. Kussmaul, R.: Ein numerisches Verfahren zur Lösung des Neumannschen Aussenraumproblems für die Helmholtzsche Schwingungsgleichung. Computing 4, 246–273 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  45. Lax, P.D.: Symmetrizable linear transformations. Comm. Pure Appl. Math. 7, 633–647 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  46. Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs 1965.

    Book  MATH  Google Scholar 

  47. Leis, R.: Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung. Math. Z. 90, 205–211 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  48. Levine, L.M.: A uniqueness theorem for the reduced wave equation. Comm. Pure Appl. Math. 17, 147–176 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  49. Lin, T.C.: The numerical solution of Helmholtz’s equation for the exterior Dirichlet problem in three dimensions. SIAM J. Numer. Anal. 22, 670–686 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  50. Magnus, W.: Fragen der Eindeutigkeit und des Verhaltens im Unendlichen für Lösungen von Δu + k 2 u = 0. Abh. Math. Sem. Hamburg 16, 77–94 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  51. Martensen, E.: Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen. Acta Math. 109, 75–135 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  52. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.

    MATH  Google Scholar 

  53. Mikhlin, S.G.: Mathematical Physics, an Advanced Course. North-Holland, Amsterdam 1970.

    MATH  Google Scholar 

  54. Müller, C.: Über die ganzen Lösungen der Wellengleichung. Math. Annalen 124, 235–264 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  55. Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.

    Book  MATH  Google Scholar 

  56. Panich, O.I.: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations. Usp. Mat. Nauk 20A, 221–226 (1965) (in Russian).

    Google Scholar 

  57. Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.

    MATH  Google Scholar 

  58. Rjasanow, S., and Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin 2007.

    MATH  Google Scholar 

  59. Ruland, C.: Ein Verfahren zur Lösung von (Δ + k 2)u = 0 in Aussengebieten mit Ecken. Applicable Analysis 7, 69–79 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  60. Sauter, S., and Schwab, C.: Boundary Element Methods. Springer, Berlin 2011.

    Book  MATH  Google Scholar 

  61. Senior, T.B.A., and Volakis, J.L.: Approximate Boundary Conditions in Electromagnetics. IEEE Electromagnetic Waves Series, vol. 41. The Institution of Electrical Engineers, London 1995.

    Google Scholar 

  62. Sloan, I. H., and Womersley, R. S.: Constructive approximations on the sphere. J. Approx. Theory 103, 91–118 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  63. Vekua, I.N.: Metaharmonic functions. Trudy Tbilisskogo matematichesgo Instituta 12, 105–174 (1943).

    MathSciNet  MATH  Google Scholar 

  64. Weck, N.: Klassische Lösungen sind auch schwache Lösungen. Arch. Math. 20, 628–637 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  65. Werner, P.: Low frequency asymptotics for the reduced wave equation in two-dimensional exterior spaces. Math. Meth. in the Appl. Sc. 8, 134–156 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  66. Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952).

    Google Scholar 

  67. Wienert, L.: Die numerische Approximation von Randintegraloperatoren für die Helmholtzgleichung im I R 3. Dissertation, Göttingen 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colton, D., Kress, R. (2019). Direct Acoustic Obstacle Scattering. In: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-30351-8_3

Download citation

Publish with us

Policies and ethics