Skip to main content

Safety Guarantees for the Electricity Grid with Significant Renewables Generation

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2019)

Abstract

This work presents a study of the frequency dynamics of the electricity grid under significant presence of generation from renewable sources. A safety requirement, namely ensuring that frequency does not deviate excessively from a reference level, is formally studied by means of probabilistic model checking of a finite-state abstraction of the grid dynamics. The dynamics of the electric network comprise a model of the frequency evolution, which is in a feedback connection with a model of renewable power generation by a heterogeneous population of solar panels. Each panel switches independently between two states (ON and OFF) in response to frequency deviations, and the power generated by the population of solar panels affects the network frequency response. A power generation loss scenario is analysed and its consequences on the overall network are formally quantified in terms of probabilistic safety. We thus provide guarantees on the grid frequency dynamics under several scenarios of solar penetration and population heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In principle, we could employ different partitioning intervals for different variables, however to ease the notation we have used n intervals for frequency-related variables and m intervals for x, y, \(P_{PV}\), \(\xi \).

  2. 2.

    We argue in Appendix B that the delayed variables are not necessary for the characterisation of the load-shedding probability.

References

  1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010)

    Article  MathSciNet  Google Scholar 

  2. Abate, A., Soudjani, S.E.Z.: Quantitative approximation of the probability distribution of a Markov process by formal abstractions. Logical Methods Comput. Sci. 11 (2015)

    Google Scholar 

  3. Aghaei, J., Alizadeh, M.I.: Demand response in smart electricity grids equipped with renewable energy eources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)

    Article  Google Scholar 

  4. Banks, J., Bruce, A., Macgill, I.: Fast frequency response markets for high renewable energy penetrations in the future Australian NEM. In: Proceedings of the Asia Pacific Solar Research Conference 2017. Australian PV Institute, December 2017

    Google Scholar 

  5. Banshwar, A., Sharma, N.K., Sood, Y.R., Shrivastava, R.: Renewable energy sources as a new participant in ancillary service markets. Energy Strategy Rev. 18, 106–120 (2017)

    Article  Google Scholar 

  6. ENTSO-E: Policy 1: Load-frequency Control and Performance. Technical report (2009)

    Google Scholar 

  7. ENTSO-E: Dispersed Generation Impact on CE Region, Dynamic Study. Technical report (2014)

    Google Scholar 

  8. European Commission: Commission regulation (EU) 2016/631 of 14th April 2016. Technical report (2016)

    Google Scholar 

  9. Wirth, H.: Recent Facts about Photovoltaics in Germany. Technical report, Fraunhofer ISE (2018)

    Google Scholar 

  10. Hartmanns, A., Hermanns, H.: Modelling and decentralised runtime control of self-stabilising power micro grids. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 420–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_31

    Chapter  Google Scholar 

  11. Hartmanns, A., Hermanns, H., Berrang, P.: A comparative analysis of decentralized power grid stabilization strategies. In: Proceedings of the Winter Simulation Conference, p. 158. Winter Simulation Conference (2012)

    Google Scholar 

  12. Li, Y., Zhang, P., Luh, P.B.: Formal analysis of networked microgrids dynamics. IEEE Trans. Power Syst. 33(3), 3418–3427 (2017)

    Article  Google Scholar 

  13. Jung, M., Wiss, O., Lazpita, B.: Analyses et Conclusions - Tests en sous-frequence. Technical report, RTE (2016)

    Google Scholar 

  14. Jung, M., Wiss, O., Lazpita, B.: Analyses et Conclusions - Tests en sur-frequence. Technical report, RTE (2016)

    Google Scholar 

  15. Peruffo, A., Guiu, E., Panciatici, P., Abate, A.: Aggregated Markov models of a heterogeneous population of photovoltaic panels. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 72–87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_5

    Chapter  Google Scholar 

  16. Peruffo, A., Guiu, E., Panciatici, P., Abate, A.: Impact of solar panels and cooling devices on frequency control after a generation loss incident. In: Decision and Control (CDC) 2018 IEEE 57th Annual Conference Proceedings. IEEE (2018)

    Google Scholar 

  17. Peruffo, A., Guiu, E., Panciatici, P., Abate, A.: Synchronous frequency grid dynamics in the presence of a large-scale population of photovoltaic panels (2018)

    Google Scholar 

  18. Rehman, S., Bader, M.A., Al-Moallem, S.A.: Cost of solar energy generated using PV panels. Renew. Sustain. Energy Rev. 11(8), 1843–1857 (2007)

    Article  Google Scholar 

  19. Soudjani, S.E.Z., Abate, A.: Probabilistic reach-avoid computation for partially degenerate stochastic processes. IEEE Trans. Autom. Control 59(2), 528–534 (2014)

    Article  MathSciNet  Google Scholar 

  20. Soudjani, S.E.Z., Abate, A.: Aggregation and control of populations of thermostatically controlled loads by formal abstractions. IEEE Trans. Control Syst. Technol. 23(3), 975–990 (2015)

    Article  Google Scholar 

  21. Esmaeil Zadeh Soudjani, S., Gerwinn, S., Ellen, C., Fränzle, M., Abate, A.: Formal synthesis and validation of inhomogeneous thermostatically controlled loads. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 57–73. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_6

    Chapter  Google Scholar 

  22. Tiam, H., Mancilla-David, F., Ellis, K.: A Detailed Performance Model for Photovoltaic Systems. Technical report, NREL (2012)

    Google Scholar 

  23. Tse, K., Ho, M., Chung, H.H., Hui, S.: A novel maximum power point tracker for PV panels using switching frequency modulation. IEEE Trans. Power Electron. 17(6), 980–989 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Peruffo .

Editor information

Editors and Affiliations

Appendices

A Definition of Kernel Continuous Regions

We want to underline the discontinuity of the kernel density \(t_{\omega }(\cdot |q)\) caused by the presence of the \(\delta (\cdot )\) functions. Let us define \(g(\varDelta f) = - \alpha _1 \varDelta f - \alpha _2 \varDelta \phi - \beta _1 \varDelta x - \beta _2 \varDelta \xi \), \(h_1(x) = - (1-a)x - b \varepsilon y \), \(h_2(y) = - b(1-x-\varepsilon y)\) and \(l(P_{PV}) = - \bar{P}Nx\). The transition kernel density can be written as

$$\begin{aligned} t_{\omega }(q'|q) = \left\{ \begin{aligned}&t_{f}(\varDelta f' - g(\varDelta f) ) \cdot&\quad \text {if } \varDelta \phi ' = \varDelta f \wedge x' = h_1(x) \\&\quad \cdot t_{P}(P_{PV}' - l(P_{PV}))&\wedge \ y' = h_2(y) \wedge \xi ' = P_{PV} \\&0&\text {otherwise} \end{aligned} \right. \end{aligned}$$

defining the continuous regions \(\mathcal {C} = \{ \varDelta \phi ' = \varDelta f \wedge x = h_1(x) \wedge y' = h_2(y) \wedge \xi ' = P_{PV} \}\). Note that in the abstraction framework, regions \(\mathcal {C}\) assume the discretised form \( \mathcal {C}_d = \{ \varDelta \bar{\phi } ' = \varDelta \bar{f}_i \wedge \bar{x} = h_1(\bar{x}) \wedge \bar{y}' = h_2(\bar{y}) \wedge \bar{\xi }' = \bar{P}_j \}. \)

B Probabilistic Safety for Partially Degenerate Models

Let us show that for a partially degenerate stochastic model the safety probability computation depends only on the stochastic state. Consider the model

$$\begin{aligned} \left\{ \begin{aligned}&x(k+1) = f(z(k)) + \omega (k) \\&y(k+1) = x(k), \end{aligned} \right. \end{aligned}$$

where \(\omega (k) \sim \mathcal {N}(0, \sigma )\) and where \(z = (x, \ y)^T\) denotes the complete state vector. Let us denote with \(t_{\omega }(\cdot )\) the density of the Gaussian kernel. The one-step transition probability kernel can be split as follows:

$$\begin{aligned} \begin{aligned} P(x(k+1)|z(k))&= t_{\omega }( f(z(k)) ), \\ P(y(k+1)|z(k))&= P(y(k+1)|x(k)) = \delta (y(k+1) - x(k)), \end{aligned} \end{aligned}$$

where \(\delta (z-p)\) represent the Dirac delta function of variable z, centred at point p. Let us consider a safe set \(A = A_x \times A_y\), where \(A_x\) and \(A_y\) denote its projections on variables x and y, respectively. Define the value function at time step H as \(V_H(z) = \mathbf {1}_{A}(z)\) and compute the one-step backward recursion:

$$\begin{aligned} \begin{aligned}&V_{H-1}(z) = \int _{A} V_H(z') P(z'|z)dz' = \int _{A} P(z'|z) dz' = \\&= \int _{A_y} \int _{A_x} t_{\omega }(dx' | f(z)) \delta (dy'-x) = \mathbf {1}_{A_y}(z) \int _{A_x} t_{\omega }(dx'| f(z)) = \\&= \int _{A_x} t_{\omega }(dx'|f(z)), \end{aligned} \end{aligned}$$

showing that the computation of the safety probability depends solely on the stochastic kernel affecting the dynamics of variable x.

C Value Function Continuity for Probabilistic Safety

In the following, we consider a generation-loss incident scenario; the load-loss case can be derived analogously. Recall the value function definition from Sect. 3 and compute the backward Bellman equation as

$$\begin{aligned} V_k(q) = \mathbf {1}_{\mathcal {L}}(q) \int _{\mathcal {Q}} V_{k+1}(\tilde{q}) t_s(\tilde{q}|q) d\tilde{q}, \quad \text {with } V_H(q) = \mathbf {1}_{\mathcal {L}}(q) . \end{aligned}$$

We show that the value functions are continuous within the continuity regions of the state space, thus there must exist a constant \(\gamma \) so that

$$\begin{aligned} |V_k(q) - V_k(\tilde{q})| \le \gamma \, \Vert q- \tilde{q} \Vert . \end{aligned}$$
(13)

To enhance the readability let us define \(g(\varDelta f) = - \alpha _1 \varDelta f - \alpha _2 \varDelta \phi - \beta _1 \varDelta x - \beta _2 \varDelta \xi \), \(h(P_{PV}) = - \bar{P}Nx \) and \(\varDelta f = \rho \), \(P_{PV} = \psi \). We now show the validity of Equation (13) by finding a value for \(\gamma \). From the definition of \(V_k(q)\), we obtain:

$$\begin{aligned} \begin{aligned}&\left| \int _{\mathcal {Q}} V_{k+1}(q) t_{f}(\underline{\rho } - g(\rho )) t_{P}( \underline{\psi } - h(\psi )) d (\underline{\rho }) d (\underline{\psi }) \right. \\&\left. - \int _{\mathcal {Q}} V_{k+1}(\tilde{q}) t_{f}(\underline{\rho } - g(\tilde{\rho })) t_{P}( \underline{\psi } - h(\tilde{\psi })) d (\underline{\rho }) d (\underline{\psi }) \ \right| \le \\&\left| \int _{\mathcal {F}} V_{k+1}(q) t_{f}(\underline{\rho } - g(\rho )) d (\underline{\rho }) \cdot \int _{\mathcal {P}} V_{k+1}(q) t_{P}( \underline{\psi } - h(\psi )) d (\underline{\psi }) \right. \\&\left. - \int _{\mathcal {F}} V_{k+1}(\tilde{q}) t_{f}(\underline{\rho } - g(\tilde{\rho })) d (\underline{\rho }) \cdot \int _{\mathcal {P}} V_{k+1}(\tilde{q}) t_{P}( \underline{\psi } - h(\tilde{\psi })) d (\underline{\psi }) \right| , \end{aligned} \end{aligned}$$

where \(\mathcal {F}\) and \(\mathcal {P}\) denote the domain of frequency and power, respectively. In order to continue, we introduce a useful lemma.

Lemma 1

Assume \(A, B, C, D \in [0,1]\), then \(|AB - CD| \le |A-C| + |B-D|\).

Proof

Assume \(A>C\), then

if \(AB-CD > 0\),

\(|AB - CD| \le |CB - CD| = C |B-D| \le |B-D| \le |B-D| + |A-C|.\)

if \(AB-CD<0\),

\(|AB - CD| \le |AB - AD| = A |B-D| \le |B-D| \le |B-D| + |A-C|.\)

Analogously for \(A \le C\).    \(\square \)

Thanks to this Lemma, we can write

$$\begin{aligned} \begin{array}{c} \left| \int _{\mathcal {F}} V_{k+1}(q) t_{f}(\underline{\rho } - g(\rho )) d (\underline{\rho }) \cdot \int _{\mathcal {P}} V_{k+1}(q) t_{P}( \underline{\psi } - h(\psi )) d (\underline{\psi }) \right. \\ \left. - \int _{\mathcal {F}} V_{k+1}(\tilde{q}) t_{f}(\underline{\rho } - g(\tilde{\rho })) d (\underline{\rho }) \cdot \int _{\mathcal {P}} V_{k+1}(\tilde{q}) t_{P}( \underline{\psi } - h(\tilde{\psi })) d (\underline{\psi }) \ \right| \le \\ \left| \int _{\mathcal {F}} t_{f}(\underline{\rho } - g(\rho )) d (\underline{\rho }) \cdot \int _{\mathcal {P}} t_{P}( \underline{\psi } - h(\psi )) d (\underline{\psi }) \right. \\ \left. - \int _{\mathcal {F}} t_{f}(\underline{\rho } - g(\tilde{\rho })) d (\underline{\rho }) \cdot \int _{\mathcal {P}} t_{P}( \underline{\psi } - h(\tilde{\psi })) d (\underline{\psi }) \ \right| \le \\ \int _{\mathcal {F}} \left| t_{f}(\underline{\rho } - g(\rho )) - t_{f}(\underline{\rho } - g(\tilde{\rho })) \right| \ d (\underline{\rho }) + \\ + \int _{\mathcal {P}} \left| t_{P}( \underline{\psi } - h(\psi )) - t_{P}( \underline{\psi } - h(\tilde{\psi })) \right| d(\underline{\psi }) . \end{array} \end{aligned}$$

Let us focus on the first integral:

$$\begin{aligned} \begin{array}{c} \int _{\mathcal {F}} | t_{f}(\underline{\rho } - g(\rho )) - t_{f}(\underline{\rho } - g(\tilde{\rho }))| d (\underline{\rho }) = \frac{1}{\sigma _{f}} \int _{\mathcal {F}} \left| \varPhi \left( \frac{\underline{\rho } - g(\rho )}{\sigma _f}\right) - \varPhi \left( \frac{\underline{\rho } - g(\tilde{\rho })}{\sigma _f}\right) \right| d\underline{\rho } \\ = \int _{\mathcal {F}} \left| \varPhi \left( u - \frac{\alpha _1(\rho - \tilde{\rho })}{2 \sigma _f} \right) - \varPhi \left( u + \frac{\alpha _1(\rho - \tilde{\rho })}{2 \sigma _f} \right) \right| d \underline{\rho } \le \frac{2 \alpha _1}{\sqrt{2\pi } \sigma _f} \ |\rho - \tilde{\rho }| , \end{array} \end{aligned}$$

and similarly for the second integral. Therefore,

$$\begin{aligned} |V_k(q) - V_k(\tilde{q})| \le \frac{2 \alpha _1}{\sqrt{2\pi } \sigma _f} \ |\rho - \tilde{\rho }| + \frac{2 a_{max}}{\sqrt{2\pi } \sigma _P} \ |\psi - \tilde{\psi }|. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peruffo, A., Guiu, E., Panciatici, P., Abate, A. (2019). Safety Guarantees for the Electricity Grid with Significant Renewables Generation. In: Parker, D., Wolf, V. (eds) Quantitative Evaluation of Systems. QEST 2019. Lecture Notes in Computer Science(), vol 11785. Springer, Cham. https://doi.org/10.1007/978-3-030-30281-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30281-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30280-1

  • Online ISBN: 978-3-030-30281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics