Skip to main content

A Mechanized Proof of Higman’s Lemma by Open Induction

  • Chapter
  • First Online:
Well-Quasi Orders in Computation, Logic, Language and Reasoning

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

I present a short, mechanically checked Isabelle/HOL formalization of Higman’s lemma by open induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dagstuhl Seminar 16031: www.dagstuhl.de/16031.

  2. 2.

    In fact, demanding transitivity suffices, since reflexivity is immediate for almost-full relations.

References

  1. Berger, U. (2004). A computational interpretation of open induction. In 19th IEEE symposium on logic in computer science (LICS 2004) (pp. 326–334). https://doi.org/10.1109/LICS.2004.1319627.

  2. Berghofer, S. (2004). A constructive proof of Higman’s lemma in Isabelle. In Berardi, S., Coppo, M., & Damiani, F. (Eds.), Types for proofs and programs: international workshop, TYPES 2003, Torino, Italy, April 30–May 4, 2003, Revised selected papers (pp. 66–82). Berlin: Springer. https://doi.org/10.1007/978-3-540-24849-1_5.

  3. Coquand, T., & Fridlender, D. (1993). A proof of Higman’s lemma by structural induction. Unpublished manuscript.

    Google Scholar 

  4. Felgenhauer, B. (2015). Decreasing Diagrams II. Archive of Formal Proofs. https://isa-afp.org/entries/Decreasing-Diagrams-II.shtml. Formal proof development.

  5. Felgenhauer, B., & van Oostrom, V. (2013) Proof orders for decreasing diagrams. In van Raamsdonk, F. (Ed.), 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 21, pp. 174–189). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.RTA.2013.174.

  6. Fridlender, D. (1998). Higman’s lemma in type theory. In Giménez, E., & Paulin-Mohring, C. (Eds.), Types for proofs and programs: international workshop TYPES’96 Aussois, France, December 15–19, 1996 selected papers (pp. 112–133). Berlin: Springer. https://doi.org/10.1007/BFb0097789.

  7. Geser, A. (1996, April). A proof of Higman’s lemma by open induction. Technical Report MIP-9606, Universitt Passau.

    Google Scholar 

  8. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, s3-2(1), 326–336. https://doi.org/10.1112/plms/s3-2.1.326.

  9. Kruskal, J. B. (1960). Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society, 95(2), 210–225. https://doi.org/10.1090/S0002-9947-1960-0111704-1.

    Article  Google Scholar 

  10. Kruskal, J. B. (1972). The theory of well-quasi-ordering: a frequently discovered concept. Journal of Combinatorial Theory, Series A, 13(3), 297–305. https://doi.org/10.1016/0097-3165(72)90063-5.

    Article  Google Scholar 

  11. Larchey-Wendling, D. (2015). A mechanized inductive proof of Kruskal’s tree theorem.

    Google Scholar 

  12. Murthy, C., & Russell, J. R. (1989, October) A constructive proof of Higman’s lemma. Technical Report TR 89-1049, Cornell University, Ithaca, NY 14853-7501. http://hdl.handle.net/1813/6849.

  13. Murthy, C. R., & Russell, J. R. (1990). A constructive proof of Higman’s lemma. In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June 4–7, 1990 (pp. 257–267). https://doi.org/10.1109/LICS.1990.113752.

  14. Nash-Williams, C. S. J. A. (1963). On well-quasi-ordering finite trees. Mathematical Proceedings of the Cambridge Philosophical Society, 59(4), 833–835. https://doi.org/10.1017/S0305004100003844.

  15. Nipkow, T., Paulson, L. C., Wenzel, M. (2002). Isabelle/HOL-a proof assistant for higher-order logic. Lecture Notes in Computer Science (Vol. 2283). Springer. https://doi.org/10.1007/3-540-45949-9.

  16. Ogawa, M., & Sternagel, C. (2012, November). Open induction. Archive of Formal Proofs. https://isa-afp.org/entries/Open_induction.shtml. Formal proof development.

  17. Raoult, J.-C. (1988). Proving open properties by induction. Information Processing Letters, 29(1), 19–23. https://doi.org/10.1016/0020-0190(88)90126-3.

    Article  Google Scholar 

  18. Richman, F., & Stolzenberg, G. (1993). Well quasi-ordered sets. Advances in Mathematics, 97(2), 145–153. https://doi.org/10.1006/aima.1993.1004.

    Article  Google Scholar 

  19. Schwichtenberg, H., Seisenberger, M., & Wiesnet, F. (2016). Higman’s lemma and its computational content. In Kahle, R., Strahm, T., & Studer, T. (Eds.), Advances in proof theory (pp. 353–375). Cham: Springer. https://doi.org/10.1007/978-3-319-29198-7_11.

  20. Sternagel, C. (2012, April). Well-quasi-orders. Archive of Formal Proofs. https://isa-afp.org/entries/Well_Quasi_Orders.shtml. Formal proof development.

  21. Sternagel, C. (2014). Certified Kruskal’s tree theorem. Journal of Formalized Reasoning, 7(1), 45–62. https://doi.org/10.6092/issn.1972-5787/4213.

    Article  Google Scholar 

  22. Sternagel, C., & Thiemann, R. (2013). Formalizing Knuth-Bendix orders and Knuth-Bendix completion. In 24th international conference on rewriting techniques and applications, Dagstuhl. LIPIcs (Vol. 21, pp. 287–302). https://doi.org/10.4230/LIPIcs.RTA.2013.287.

  23. Thiemann, R., & Sternagel, C. (2009). Certification of termination proofs using \(\sf CeTA\). In 22nd international conference on theorem proving in higher-order logics (TPHOLs 2009). Lecture Notes in Computer Science (Vol. 5674, pp. 452–468). Springer. https://doi.org/10.1007/978-3-642-03359-9_31.

  24. Veldman, W., & Bezem, M. (1993). Ramsey’s theorem and the pigeonhole principle in intuitionistic mathematics. Journal of the London Mathematical Society, s2-47(2), 193–211. https://doi.org/10.1112/jlms/s2-47.2.193.

  25. Vytiniotis, D., Coquand, T., Wahlstedt, D. (2012). Stop when you are almost-full. In Beringer, L. & Felty, A. (Eds.), 3rd international conference on interactive theorem proving (ITP 2012) (pp. 250–265). Berlin: Springer. https://doi.org/10.1007/978-3-642-32347-8_17.

  26. Wu, C., Zhang, X., Urban, C. (2011, August). The Myhill-Nerode theorem based on regular expressions. Archive of Formal Proofs. https://isa-afp.org/entries/Myhill-Nerode.shtml. Formal proof development.

  27. Wu, C., Zhang, X., & Urban, C. (2014). A formalisation of the Myhill-Nerode theorem based on regular expressions. Journal of Automated Reasoning, 52(4), 451–480. https://doi.org/10.1007/s10817-013-9297-2.

Download references

Acknowledgements

I am grateful to Mizuhito Ogawa, who introduced me to open induction and the idea of applying it to formalize Higman’s lemma in the first place. Thanks goes also to the organizers and participants of the delightful Dagstuhl seminar on Well Quasi-Orders in Computer Science, for fruitful discussions and providing a nice atmosphere. I also want to thank Bertram Felgenhauer for giving me a nudge when I was stuck in the proof of Lemma 2(3).

Finally, I am indebted to an anonymous reviewer who pointed out many blemishes in my first draft and provided constructive (pun intended) criticism. Her or his feedback helped to improve this work and lead to a generalization (Lemma 4) of an earlier result (Corollary 2).

This work is supported by FWF (Austrian Science Fund) project P27502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sternagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sternagel, C. (2020). A Mechanized Proof of Higman’s Lemma by Open Induction. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_12

Download citation

Publish with us

Policies and ethics