Skip to main content

Exploring Declarative Local-Search Neighbourhoods with Constraint Programming

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2019)

Abstract

Using constraint programming (CP) to explore a local-search neighbourhood was first tried in the mid 1990s. The advantage is that constraint propagation can quickly rule out uninteresting neighbours, sometimes greatly reducing the number actually probed. However, a CP model of the neighbourhood has to be handcrafted from the model of the problem: this can be difficult and tedious. That research direction appears abandoned since large-neighbourhood search (LNS) and constraint-based local search (CBLS) arose as alternatives that seem easier to use. Recently, the notion of declarative neighbourhood was added to the technology-independent modelling language MiniZinc, for use by any backend to MiniZinc, but currently only used by a CBLS backend. We demonstrate that declarative neighbourhoods are indeed technology-independent by using the old idea of CP-based neighbourhood exploration: we explain how to encode automatically a declarative neighbourhood into a CP model of the neighbourhood. This enables us to lift any CP solver into a local-search backend to MiniZinc. Our prototype is competitive with CP, CBLS, and LNS backends to MiniZinc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/informarte/yuck.

  2. 2.

    http://lopez-ibanez.eu/tsptw-instances.

References

  1. Akgün, O., et al.: A framework for constraint based local search using Essence. In: Lang, J. (ed.) IJCAI 2018, pp. 1242–1248. IJCAI Organization (2018)

    Google Scholar 

  2. Björdal, G., Flener, P., Pearson, J.: Generating compound moves in local search by hybridisation with complete search. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 95–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_7

    Chapter  Google Scholar 

  3. Björdal, G., Flener, P., Pearson, J., Stuckey, P.J., Tack, G.: Declarative local-search neighbourhoods in MiniZinc. In: Alamaniotis, M., Lagniez, J.M., Lallouet, A. (eds.) ICTAI 2018. pp. 98–105. IEEE Computer Society (2018)

    Google Scholar 

  4. Björdal, G., Monette, J.N., Flener, P., Pearson, J.: A constraint-based local search backend for MiniZinc. Constraints 20(3), 325–345 (2015). The fzn-oscar-cbls backend is available at http://optimisation.research.it.uu.se/software

    Article  MathSciNet  Google Scholar 

  5. Charreteur, F., Botella, B., Gotlieb, A.: Modelling dynamic memory management in constraint-based testing. J. Syst. Softw. 82(11), 1755–1766 (2009)

    Article  Google Scholar 

  6. Chiarandini, M., Di Gaspero, L., Gualandi, S., Schaerf, A.: The balanced academic curriculum problem revisited. J. Heuristics 18(1), 119–148 (2012)

    Article  Google Scholar 

  7. De Landtsheer, R., Ponsard, C.: OscaR.cbls: an open source framework for constraint-based local search. In: ORBEL-27, the 27th Annual Conference of the Belgian Operational Research Society (2013). https://www.orbel.be/orbel27/pdf/abstract293.pdf, the OscaR.cbls solver is available at https://bitbucket.org/oscarlib/oscar/branch/CBLS

  8. Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving the car-sequencing problem in constraint logic programming. In: Kodratoff, Y. (ed.) ECAI 1988, pp. 290–295. Pitman (1988)

    Google Scholar 

  9. Frisch, A.M., Grum, M., Jefferson, C., Martinez Hernandez, B., Miguel, I.: The design of Essence: a constraint language for specifying combinatorial problems. In: IJCAI 2007, pp. 80–87. Morgan Kaufmann (2007)

    Google Scholar 

  10. Ganji, M., Bailey, J., Stuckey, P.J.: A declarative approach to constrained community detection. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 477–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_31

    Chapter  Google Scholar 

  11. Gecode Team: Gecode: a generic constraint development environment (2018). The Gecode solver and its MiniZinc backend are available at https://www.gecode.org

  12. Glover, F., Laguna, M.: Tabu search. In: Modern Heuristic Techniques for Combinatorial Problems, pp. 70–150. Wiley (1993)

    Google Scholar 

  13. Gotlieb, A., Botella, B., Watel, M.: INKA: ten years after the first ideas. In: Pollet, Y. (ed.) ICSSEA 2006 (2006)

    Google Scholar 

  14. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier/Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  15. Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 293–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07046-9_21

    Chapter  Google Scholar 

  16. McCarthy, J.: Towards a mathematical science of computation. In: Proceedings of IFIP Congress (1962)

    Google Scholar 

  17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007), the MiniZinc toolchain is available at https://www.minizinc.org. https://doi.org/10.1007/978-3-540-74970-7_38

  18. OscaR Team: OscaR: Scala in OR (2012). https://oscarlib.bitbucket.io

  19. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_35

    Chapter  Google Scholar 

  20. Pesant, G., Gendreau, M.: A constraint programming framework for local search methods. J. Heuristics 5(3), 255–279 (1999). Extends a preliminary version at CP 1996, LNCS, vol. 1118, pp. 353–366, Springer (1996)

    Article  Google Scholar 

  21. Prud’homme, C., Lorca, X., Jussien, N.: Explanation-based large neighborhood search. Constraints 19(4), 339–379 (2014)

    Article  MathSciNet  Google Scholar 

  22. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  23. Schaus, P., Van Hentenryck, P., Monette, J.N., Coffrin, C., Michel, L., Deville, Y.: Solving steel mill slab problems with constraint-based techniques: CP, LNS, and CBLS. Constraints 16(2), 125–147 (2011)

    Article  MathSciNet  Google Scholar 

  24. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  25. Shaw, P., De Backer, B., Furnon, V.: Improved local search for CP toolkits. Ann. Oper. Res. 115(1–4), 31–50 (2002)

    Article  MathSciNet  Google Scholar 

  26. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008–2013. AI Mag. 35(2), 55–60 (2014). https://www.minizinc.org/challenge.html

    Article  Google Scholar 

  27. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their constructive feedback that helped improve this paper. This work is supported by the Swedish Research Council (VR) through Project Grant 2015-04910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Björdal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Björdal, G., Flener, P., Pearson, J., Stuckey, P.J. (2019). Exploring Declarative Local-Search Neighbourhoods with Constraint Programming. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30048-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30047-0

  • Online ISBN: 978-3-030-30048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics