Skip to main content

Representing Fitness Landscapes by Valued Constraints to Understand the Complexity of Local Search

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11802))

  • 1322 Accesses

Abstract

Local search is widely used to solve combinatorial optimisation problems and to model biological evolution, but the performance of local search algorithms on different kinds of fitness landscapes is poorly understood. Here we introduce a natural approach to modelling fitness landscapes using valued constraints. This allows us to investigate minimal representations (normal forms) and to consider the effects of the structure of the constraint graph on the tractability of local search. First, we show that for fitness landscapes representable by binary Boolean valued constraints there is a minimal necessary constraint graph that can be easily computed. Second, we consider landscapes as equivalent if they allow the same (improving) local search moves; we show that a minimal normal form still exists, but is NP-hard to compute. Next we consider the complexity of local search on fitness landscapes modelled by valued constraints with restricted forms of constraint graph. In the binary Boolean case, we prove that a tree-structured constraint graph gives a tight quadratic bound on the number of improving moves made by any local search; hence, any landscape that can be represented by such a model will be tractable for local search. We build two families of examples to show that both the conditions in our tractability result are essential. With domain size three, even just a path of binary constraints can model a landscape with an exponentially long sequence of improving moves. With a treewidth two constraint graph, even with a maximum degree of three, binary Boolean constraints can model a landscape with an exponentially long sequence of improving moves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM J. Comput. 35(4), 804–824 (2006). https://doi.org/10.1137/S0097539704447237

    Article  MathSciNet  MATH  Google Scholar 

  2. Carbonnel, C., Romero, M., Zivny, S.: The complexity of general-valued CSPs seen from the other side. In: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, 7–9 October 2018, pp. 236–246 (2018)

    Google Scholar 

  3. Chapdelaine, P., Creignou, N.: The complexity of Boolean constraint satisfaction local search problems. Ann. Math. Artif. Intell. 43(1–4), 51–63 (2005). https://doi.org/10.1007/s10472-004-9419-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P.G., Zivny, S.: An algebraic theory of complexity for discrete optimization. SIAM J. Comput. 42(5), 1915–1939 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cooper, M.C., De Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 68–73 (2007)

    Google Scholar 

  6. Crona, K., Greene, D., Barlow, M.: The peaks and geometry of fitness landscapes. J. Theor. Biol. 317, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  7. de Visser, J., Park, S., Krug, J.: Exploring the effect of sex on empirical fitness landscapes. Am. Nat. 174, S15–S30 (2009)

    Article  Google Scholar 

  8. Färnqvist, T.: Constraint optimization problems and bounded tree-width revisited. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 163–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_11

    Chapter  Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  10. Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37, 79–100 (1988)

    Article  MathSciNet  Google Scholar 

  11. Kaznatcheev, A.: Computational complexity as an ultimate constraint on evolution. Genetics 212(1), 245–265 (2019)

    Article  Google Scholar 

  12. Kolmogorov, V., Zivny, S.: The complexity of conservative valued CSPs. J. ACM 60(2), 10:1–10:38 (2013). https://doi.org/10.1145/2450142.2450146

    Article  MathSciNet  MATH  Google Scholar 

  13. Llewellyn, D.C., Tovey, C.A., Trick, M.A.: Local optimization on graphs. Discrete Appl. Math. 23(2), 157–178 (1989)

    Article  MathSciNet  Google Scholar 

  14. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013). http://www.sciencedirect.com/science/article/pii/S0020025513003125

    Article  Google Scholar 

  15. Monien, B., Tscheuschner, T.: On the power of nodes of degree four in the local max-cut problem. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 264–275. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13073-1_24

    Chapter  Google Scholar 

  16. Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes. J. Heuristics 24(3), 265–294 (2018)

    Article  Google Scholar 

  17. Poelwijk, F., Kiviet, D., Weinreich, D., Tans, S.: Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007)

    Article  Google Scholar 

  18. Poelwijk, F., Sorin, T.N., Kiviet, D., Tans, S.: Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272, 141–144 (2011)

    Article  Google Scholar 

  19. Schaffer, A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  Google Scholar 

  20. Tayarani-Najaran, M., Prügel-Bennett, A.: On the landscape of combinatorial optimization problems. IEEE Trans. Evol. Comput. 18(3), 420–434 (2014). https://doi.org/10.1109/TEVC.2013.2281502

    Article  Google Scholar 

  21. Thapper, J., Zivny, S.: Necessary conditions for tractability of valued CSPs. SIAM J. Discrete Math. 29(4), 2361–2384 (2015). https://doi.org/10.1137/140990346

    Article  MathSciNet  MATH  Google Scholar 

  22. Thapper, J., Zivny, S.: The complexity of finite-valued CSPs. J. ACM 63(4), 37:1–37:33 (2016). https://doi.org/10.1145/2974019

    Article  MathSciNet  MATH  Google Scholar 

  23. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the Sixth International Congress on Genetics, pp. 355–366 (1932)

    Google Scholar 

Download references

Acknowledgments

David A. Cohen was supported by Leverhulme Trust Grant RPG-2018-161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Jeavons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaznatcheev, A., Cohen, D.A., Jeavons, P.G. (2019). Representing Fitness Landscapes by Valued Constraints to Understand the Complexity of Local Search. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30048-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30047-0

  • Online ISBN: 978-3-030-30048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics