Skip to main content

Organic Electrode Material for Sodium-Ion Batteries

  • Chapter
  • First Online:
Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Exploiting from tremendously abundant and inexpensive sodium reservoirs, sodium ion batteries (NaIBs) are estimated as reassuring candidate for electrochemical energy conservation and storage on large scale. Owing to larger radius and atomic mass of Na+ than conventionally used materials, NaIBs having inorganic electrode encounter with little capacity and inadequate cycle life. Development of environment friendly, renewable, abundant raw material based batteries are gaining much attention. Organic electrode based sodium ion batteries are one of them. Presently, a lot of work is done on functionalizing organic electrodes, incorporation of nanostructured materials to tune their electrochemical properties. In collation, organic electrode exhibit merits like high capacity, structural design ability and lesser cationic radius limitations. Organic electrodes plagued with solubility issues in electrolytes and lesser conductivity. Here in organic electrodes based on their reactions are divided into three classes; C=O based than C–N=O based and then doping reactions are systematically viewed. In this chapter we summarize the research work to put forward organic electrode material for NaIBs. The conductivity issue can be resolved through increasing conjugated structures. Theoretical capacity can be elevated by expanding active groups. Working voltage can be regulated by tuning grafting overseeing lowest unoccupied molecular orbital (LUMO). Future of organic electrode relies mainly on aprotic electrolyte based full NaIBs with long cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribière, P., Poizot, P., Tarascon, J.M.: Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8, 120 (2009)

    Article  CAS  Google Scholar 

  2. Chen, J., Liu, Y., Li, W., Wu, C., Xu, L., Yang, H.: Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications 50 (2015). https://doi.org/10.1007/s10853-015-9092-z

    Article  CAS  Google Scholar 

  3. Chen, L., Liu, S., Wang, Y., Zhao, L., Zhao, Y.: 2, 3-Dicyano-5, 6-dichloro-1, 4-benzoquinone as a novel organic anode for sodium-ion batteries. J. Electroanal. Chem. 837, 226–229 (2019)

    Article  CAS  Google Scholar 

  4. Chen, L., Li, W., Wang, Y., Wang, C., Xia, Y.: Polyimide as anode electrode material for rechargeable sodium batteries. RSC Adv. 4(48), 25369–25373 (2014)

    Article  CAS  Google Scholar 

  5. Chen, Y., Manzhos, S.: A comparative computational study of lithium and sodium insertion into Van Der Waals and covalent tetracyanoethylene (TCNE)-based crystals as promising materials for organic lithium and sodium ion batteries. Phys. Chem. Chem. Phys. 18(13), 8874–8880 (2016)

    Article  CAS  Google Scholar 

  6. Choi, A., Kim, Y.K., Kim, T.K., Kwon, M.-S., Lee, K.T., Moon, H.R.: 4,4′-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries. J. Mater. Chem. A 2(36), 14986–14993 (2014)

    Article  CAS  Google Scholar 

  7. Deng, Q., Fan, C., Wang, L., Cao, B., Jin, Y., Che, C.-M., Li, J.: Organic potassium terephthalate (K2C8H4O4) with stable lattice structure exhibits excellent cyclic and rate capability in Li-ion batteries. Electrochim. Acta 222, 1086–1093 (2016)

    Google Scholar 

  8. Dou, X., Hasa, I., Saurel, D., Vaalma, C., Wu, L., Buchholz, D., Bresser, D., Komaba, S., Passerini, S.: Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019)

    Article  CAS  Google Scholar 

  9. Gao, H., Xin, S., Xue, L., Goodenough, J.B.: Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem 4(4), 833–844 (2018)

    Article  CAS  Google Scholar 

  10. Gao, X., Zhu, G., Zhang, X., Hu, T.: Porous carbon materials derived from in situ construction of metal-organic frameworks for high-performance sodium ions batteries. Microporous Mesoporous Mater. 273, 156–162 (2019)

    Article  CAS  Google Scholar 

  11. Geng, J., Bonnet, J.-P., Renault, S., Dolhem, F., Poizot, P.: Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit. Energy Environ. Sci. 3(12), 1929–1933 (2010)

    Article  CAS  Google Scholar 

  12. Huang, J., Wei, Z., Liao, J., Ni, W., Wang, C., Ma, J.: Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond Mos2. J. Energy Chem. 33, 100–124 (2019)

    Article  Google Scholar 

  13. Ingersoll, N., Karimi, Z., Patel, D., Underwood, R., Warren, R.: Metal organic framework-derived carbon structures for sodium-ion battery anodes. Electrochim. Acta 297, 129–136 (2019)

    Article  CAS  Google Scholar 

  14. Jeong, S., Kim, B.H., Park, Y.D., Lee, C.Y., Mun, J., Tron, A.: Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries. J. Alloys Compd. 784, 720–726 (2019)

    Article  CAS  Google Scholar 

  15. Kim, H., Hong, J., Park, K.-Y., Kim, H., Kim, S.-W., Kang, K.: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014)

    Article  CAS  Google Scholar 

  16. Kim, J.-K., Kim, Y., Park, S., Ko, H., Kim, Y.: Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ. Sci. 9(4), 1264–1269 (2016)

    Article  CAS  Google Scholar 

  17. Kim, J.-K., Scheers, J., Ahn, J.-H., Johansson, P., Matic, A., Jacobsson, P.: Nano-fibrous polymer films for organic rechargeable batteries. J. Mater. Chem. A 1(7), 2426–2430 (2013)

    Article  CAS  Google Scholar 

  18. Kim, J.-H., Jung, M.-J., Kim, M.-J., Lee, Y.-S.: Electrochemical performances of lithium and sodium ion batteries based on carbon materials. J. Ind. Eng. Chem. 61, 368–380 (2018)

    Article  CAS  Google Scholar 

  19. Kim, K.C., Liu, T., Jung, K.H., Lee, S.W., Jang, S.S.: Unveiled correlations between electron affinity and solvation in redox potential of quinone-based sodium-ion batteries. Energy Storage Mater. (2019)

    Google Scholar 

  20. Li, D., Chen, L., Chen, L., Sun, Q., Zhu, M., Zhang, Y., Liu, Y., et al.: Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. J. Power Sources 414,308–316 (2019)

    Article  CAS  Google Scholar 

  21. Li, G., Xue, R., Chen, L.: The influence of polytetrafluorethylene reduction on the capacity loss of the carbon anode for lithium ion batteries. Solid State Ion. 90(1), 221–225 (1996)

    Article  CAS  Google Scholar 

  22. Liang, Y., Zhang, P., Chen, J.: Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 4(3), 1330–1337 (2013)

    Article  CAS  Google Scholar 

  23. Liao, Q., Hou, H., Liu, X., Yao, Y., Dai, Z., Yu, C., Li, D.: L-lactic acid and sodium P-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery. J. Phys. Chem. Solids 115, 233–237 (2018)

    Article  CAS  Google Scholar 

  24. Liu, T., Cheng, X., Yu, H., Zhu, H., Peng, N., Zheng, R., Zhang, J., et al.: An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 18, 68–91 (2019)

    Article  CAS  Google Scholar 

  25. Luo, C., Fan, X., Ma, Z., Gao, T., Wang, C.: Self-healing chemistry between organic material and binder for stable sodium-ion batteries. Chem 3(6), 1050–1062 (2017)

    Article  CAS  Google Scholar 

  26. Luo, C., Huang, R., Kevorkyants, R., Pavanello, M., He, H., Wang, C.: Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett. 14(3), 1596–1602 (2014)

    Article  CAS  Google Scholar 

  27. Luo, C., Wang, J., Fan, X., Zhu, Y., Han, F., Suo, L., Wang, C.: roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries. Nano Energy 13, 537–545 (2015)

    Article  CAS  Google Scholar 

  28. Oyaizu, K., Ando, Y., Konishi, H., Nishide, H.: Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J. Am. Chem. Soc. 130(44), 14459–14461 (2008)

    Article  CAS  Google Scholar 

  29. Precht, R., Stolz, S., Mankel, E., Mayer, T., Jaegermann, W., Hausbrand, R.: Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): results for a TCNQ thin film obtained by a surface science approach. Phys. Chem. Chem. Phys. 18(4), 3056–3064 (2016)

    Article  CAS  Google Scholar 

  30. Price, J.T., Paquette, J.A., Harrison, C.S., Bauld, R., Fanchini, G., Gilroy, J.B.: 6-Oxoverdazyl radical polymers with tunable electrochemical properties. Polym. Chem. 5(18), 5223–5226 (2014)

    Article  CAS  Google Scholar 

  31. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  32. Sk, M.A., Manzhos, S.: Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations. J. Power Sources 324, 572–581 (2016)

    Article  CAS  Google Scholar 

  33. Su, D., Zhang, J., Dou, S., Wang, G.: Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries. Chem. Commun. 51(89), 16092–16095 (2015)

    Article  CAS  Google Scholar 

  34. Wang, H., Shuang, Y., Ma, D., Huang, X., Meng, F., Zhang, X.: Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries 4 (2014). https://doi.org/10.1002/aenm.201301651

    Article  CAS  Google Scholar 

  35. Wang, H.-g., Yuan, S., Si, Z., Zhang, X.-b.: Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 8(11), 3160–3165 (2015)

    Article  CAS  Google Scholar 

  36. Wang, J., Lv, C., Zhang, Y., Deng, L., Peng, Z.: Polyphenylene wrapped sulfur/multi-walled carbon nano-tubes via spontaneous grafting of diazonium salt for improved electrochemical performance of lithium-sulfur battery. Electrochim. Acta 165, 136–141 (2015)

    Article  CAS  Google Scholar 

  37. Wang, L., Zou, J., Chen, S., Yang, J., Qing, F., Gao, P., Li, J.: Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries. Electrochim. Acta 235, 304–310 (2017)

    Google Scholar 

  38. Wang, S., Wang, L., Zhang, K., Zhu, Z., Tao, Z., Chen, J.: Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 13(9), 4404–4409 (2013)

    Google Scholar 

  39. Wang, X., Shang, Z., Yang, A., Zhang, Q., Cheng, F., Jia, D., Chen, J.: Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem 5(2), 364–375 (2019)

    Article  CAS  Google Scholar 

  40. Wang, Z., Li, A., Gou, L., Ren, J., Zhai, G.: Computational electrochemistry study of derivatives of anthraquinone and phenanthraquinone analogues: the substitution effect. RSC Adv. 6(92), 89827–89835 (2016)

    Article  CAS  Google Scholar 

  41. Wu, D., Luo, K., Du, S., Hu, X.: A low-cost non-conjugated dicarboxylate coupled with reduced graphene oxide for stable sodium-organic batteries. J. Power Sources 398, 99–105 (2018)

    Article  CAS  Google Scholar 

  42. Wu, F., Zhao, C., Chen, S., Lu, Y., Hou, Y., Hu, Y.-S., Maier, J., Yu, Y.: Multi-electron reaction materials for sodium-based batteries. Mater. Today 21(9), 960–973 (2018)

    Article  CAS  Google Scholar 

  43. Xie, J., Gu, P., Zhang, Q.: Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Lett. 2(9), 1985–1996 (2017)

    Article  CAS  Google Scholar 

  44. Xu, F., Xia, J., Shi, W.: Anthraquinone-based polyimide cathodes for sodium secondary batteries. Electrochem. Commun. 60, 117–20 (2015)

    Article  CAS  Google Scholar 

  45. Zhang, C., Lu, C., Zhang, F., Qiu, F., Zhuang, X., Feng, X.: Two-dimensional organic cathode materials for alkali-metal-ion batteries. J. Energy Chem. 27(1), 86–98 (2018)

    Article  Google Scholar 

  46. Zhang, S., Huang, W., Hu, P., Huang, C., Shang, C., Zhang, C., Yang, R., Cui, G.: Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage 3 (2014). https://doi.org/10.1039/c4ta06058j

    Article  CAS  Google Scholar 

  47. Zhang, Y., Gao, Z.: High performance anode material for sodium-ion batteries derived from covalent-organic frameworks. Electrochim. Acta 301, 23–28 (2019)

    Article  CAS  Google Scholar 

  48. Zhao, Q., Hu, X., Zhang, K., Zhang, N., Hu, Y., Chen, J.: Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano Lett. 15(1), 721–726 (2015)

    Article  CAS  Google Scholar 

  49. Zhao, Q., Whittaker, A., Zhao, X.S.: Polymer electrode materials for sodium-ion batteries 11 (2018). https://doi.org/10.3390/ma11122567

    Article  CAS  Google Scholar 

  50. Zhao, R., Zhu, L., Cao, Y., Ai, X., Yang, H.X.: An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries 21 (2012). https://doi.org/10.1016/j.elecom.2012.05.015

    Article  CAS  Google Scholar 

  51. Zhong, H., Wang, G., Song, Z., Li, X., Tang, H., Zhou, Y., Zhan, H.: Organometallic polymer material for energy storage. Chem. Commun. 50(51), 6768–6770 (2014)

    Article  CAS  Google Scholar 

  52. Zhu, H., Yin, J., Zhao, X., Wang, C., Yang, X.: Humic acid as promising organic anodes for lithium/sodium ion batteries. Chem. Commun. 51(79), 14708–14711 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneela Sabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabir, A., Zia, T., Usman, M., Shafiq, M., Khan, R.U., Jacob, K.I. (2020). Organic Electrode Material for Sodium-Ion Batteries. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_12

Download citation

Publish with us

Policies and ethics