Skip to main content

Predicting Drug Target Interactions Using Dimensionality Reduction with Ensemble Learning

  • Conference paper
  • First Online:
Proceedings of ICRIC 2019

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 597))

Abstract

Drug target interaction is one of the most significant fields of research for drug discovery. The laboratory experiments conducted to identify the drug target interactions are tedious, delayed, and costly. Hence, there is an urgent need to develop highly efficient computational methods for identifying potential drug target interactions that can limit the search space of these laboratory experiments. The existing computational techniques for drug target interaction have been broadly classified into similarity-based methods and feature-based methods. In this paper, a novel feature-based technique to predict drug target interactions has been proposed. The technique uses ensemble learning to determine drug target interactions. Ensemble learning offers greater accuracy in comparison with the traditional classifiers. Thus, the proposed technique aims to improve accuracy using ensemble learning. Also, dimensionality reduction of drug target features is performed using principal component analysis so that the computational time of the method can be reduced. The results indicate an improved performance in comparison with the state-of-the-art methods in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., et al.: Drug–target interaction prediction: databases, web servers and computational models. Briefings Bioinf. 17(4), 696–712 (2016)

    Google Scholar 

  2. Paul, S.M., et al.: How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug. Discov. 9(3), 203 (2010)

    Google Scholar 

  3. Ezzat, A., et al.: Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Briefings Bioinf. bby002–bby002 (2018)

    Google Scholar 

  4. Cheng, F., et al.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS. Comput. Biol. 8(5), e1002503 (2012)

    Google Scholar 

  5. Emig, D., et al.: Drug target prediction and repositioning using an integrated network-based approach. PLoS. One. 8(4), e60618 (2013)

    Google Scholar 

  6. Jin, G., Wong, S.T.: Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 19(5), 637–644 (2014)

    Google Scholar 

  7. Atias, N., Sharan, R.: An algorithmic framework for predicting side-effects of drugs. In: Annual International Conference on Research in Computational Molecular Biology. Springer (2010)

    Google Scholar 

  8. Pauwels, E., Stoven, V., Yamanishi, Y.: Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinf. 12(1), 169 (2011)

    Google Scholar 

  9. Yamanishi, Y., Pauwels, E., Kotera, M.: Drug side-effect prediction based on the integration of chemical and biological spaces. J. Chem. Inf. Model. 52(12), 3284–3292 (2012)

    Google Scholar 

  10. Bolton, E.E., et al.: PubChem: integrated platform of small molecules and biological activities. In: Annual Reports in Computational Chemistry, pp. 217–241. Elsevier (2008)

    Google Scholar 

  11. Jacob, L., Vert, J.-P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Google Scholar 

  12. Li, H., et al.: TarFisDock: a web server for identifying drug targets with docking approach. Nucleic. Acids. Res. 34(suppl_2), W219-W224 (2006)

    Google Scholar 

  13. Xie, L., et al.: Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS. Comput. Biol. 7(4), e1002037 (2011)

    Google Scholar 

  14. Mousavian, Z., Masoudi-Nejad, A.: Drug–target interaction prediction via chemogenomic space: learning-based methods. Expert. Opin. Drug. Metabol. Toxicol. 10(9), 1273–1287 (2014)

    Google Scholar 

  15. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Google Scholar 

  16. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics. 25(18), 2397–2403 (2009)

    Google Scholar 

  17. Zheng, X., et al.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM (2013)

    Google Scholar 

  18. Gönen, M.: Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)

    Google Scholar 

  19. Wang, W., Yang, S., Li, J.: Drug target predictions based on heterogeneous graph inference. In: Biocomputing, pp. 53–64. World Scientific (2013)

    Google Scholar 

  20. Tabei, Y., Yamanishi, Y.: Scalable prediction of compound-protein interactions using minwise hashing. BMC. Syst. Biol. 7(6), S3 (2013)

    Google Scholar 

  21. Mei, J.-P., et al.: Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2012)

    Google Scholar 

  22. Nagamine, N., Sakakibara, Y.: Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 23(15), 2004–2012 (2007)

    Article  Google Scholar 

  23. He, Z., et al.: Predicting drug-target interaction networks based on functional groups and biological features. PloS. one. 5(3), e9603 (2010)

    Google Scholar 

  24. Perlman, L., et al.: Combining drug and gene similarity measures for drug-target elucidation. J. Comput. Biol. 18(2), 133–145 (2011)

    Google Scholar 

  25. Yamanishi, Y., et al.: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Google Scholar 

  26. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE. Trans. Syst. Man. Cybern. 21(3), 660–674 (1991)

    Google Scholar 

  27. Cristianini, N., Taylor, J.: Support vector machines and other Kernel-based learning algorithms. Technical Report (2000)

    Google Scholar 

  28. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  29. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Google Scholar 

  30. Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems. Springer (2000)

    Google Scholar 

  31. Cao, D.-S., et al.: Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31(2), 279–281 (2014)

    Google Scholar 

  32. Li, Z.-R., et al.: PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic. Acids. Res. 34(suppl_2), W32–W37 (2006)

    Google Scholar 

  33. Dietterichl, T.G.: Ensemble learning (2002)

    Google Scholar 

  34. Law, V., et al.: Drugbank 4.0: shedding new light on drug metabolism. Nucleic. Acids. Res. 42(D1), D1091–D1097 (2013)

    Google Scholar 

  35. Fawcett, T.: An introduction to ROC analysis. Pattern. Recogn. Lett. 27(8), 861–874 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanica Sachdev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sachdev, K., Gupta, M.K. (2020). Predicting Drug Target Interactions Using Dimensionality Reduction with Ensemble Learning. In: Singh, P., Kar, A., Singh, Y., Kolekar, M., Tanwar, S. (eds) Proceedings of ICRIC 2019 . Lecture Notes in Electrical Engineering, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-030-29407-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29407-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29406-9

  • Online ISBN: 978-3-030-29407-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics