Skip to main content

Sex Related Differences in Retinal Pigment Epithelium and Retinal Disease

  • Chapter
  • First Online:
Retinal Pigment Epithelium in Health and Disease

Abstract

Sex-related differences have been identified in various ophthalmic disorders. Sex hormone receptors, such as estrogen receptors, have been found throughout the eye including retina and retinal pigment epithelium (RPE), indicating the importance of hormone regulation in these tissues. In this chapter we will discuss sex differences within the eye and how they relate to retina and RPE health and function. As many autoimmune diseases occur more often in women, we will also examine autoimmune diseases and the secondary effects that may arise within the eye. In addition, the role estrogen plays in systemic inflammation may help in understanding the role of estrogen in the eye. By further understanding the differences between males and females in ocular health, we can provide more tailored treatments for disease and design preventative care aimed at regaining hormonal balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Popkov VA, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Jankauskas SS, et al. Diseases and aging: gender matters. Biochem Biokhim. 2015;80(12):1560–70.

    Article  CAS  Google Scholar 

  2. Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci. 2016;18(4):437–46.

    PubMed  PubMed Central  Google Scholar 

  3. Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat Rev Genet. 2008;9(12):911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM. Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. Circ J. 2009;73(10):1774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990-2010. Ophthalmology. 2013;120(12):2377–84.

    Article  PubMed  Google Scholar 

  6. Wagner H, Fink BA, Zadnik K. Sex- and gender-based differences in healthy and diseased eyes. Optometry (St Louis, MO). 2008;79(11):636–52.

    Article  Google Scholar 

  7. Clayton JA, Davis AF. Sex/gender disparities and women’s eye health. Curr Eye Res. 2015;40(2):102–9.

    Article  PubMed  Google Scholar 

  8. Beck SR, Freitag SL, Singer N. Ocular injuries in battered women. Ophthalmology. 1996;103(1):148–51.

    Article  CAS  PubMed  Google Scholar 

  9. Hartzell KN, Botek AA, Goldberg SH. Orbital fractures in women due to sexual assault and domestic violence. Ophthalmology. 1996;103(6):953–7.

    Article  CAS  PubMed  Google Scholar 

  10. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab. 1986;15(2):213–28.

    Article  CAS  PubMed  Google Scholar 

  11. Akar Y, Yucel I, Akar ME, Zorlu G, Ari ES. Effect of pregnancy on intraobserver and intertechnique agreement in intraocular pressure measurements. Ophthalmologica. 2005;219(1):36–42.

    Article  PubMed  Google Scholar 

  12. Qureshi IA. Intraocular pressure: association with menstrual cycle, pregnancy and menopause in apparently healthy women. Chin J Physiol. 1995;38(4):229–34.

    CAS  PubMed  Google Scholar 

  13. Qureshi IA, Xi XR, Wu XD. Intraocular pressure trends in pregnancy and in the third trimester hypertensive patients. Acta Obstet Gynecol Scand. 1996;75(9):816–9.

    Article  CAS  PubMed  Google Scholar 

  14. Qureshi IA. Measurements of intraocular pressure throughout the pregnancy in Pakistani women. Chin Med Sci J. 1997;12(1):53–6.

    CAS  PubMed  Google Scholar 

  15. Phillips CI, Gore SM. Ocular hypotensive effect of late pregnancy with and without high blood pressure. Br J Ophthalmol. 1985;69(2):117–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qureshi IA. Ocular hypertensive effect of menopause with and without systemic hypertension. Acta Obstet Gynecol Scand. 1996;75(3):266–9.

    Article  CAS  PubMed  Google Scholar 

  17. Weinreb RN, Lu A, Beeson C. Maternal corneal thickness during pregnancy. Am J Ophthalmol. 1988;105(3):258–60.

    Article  CAS  PubMed  Google Scholar 

  18. Ziai N, Ory SJ, Khan AR, Brubaker RF. Beta-human chorionic gonadotropin, progesterone, and aqueous dynamics during pregnancy. Arch Ophthalmol. 1994;112(6):801–6.

    Article  CAS  PubMed  Google Scholar 

  19. Park SB, Lindahl KJ, Temnycky GO, Aquavella JV. The effect of pregnancy on corneal curvature. CLAO J. 1992;18(4):256–9.

    CAS  PubMed  Google Scholar 

  20. Millodot M. The influence of pregnancy on the sensitivity of the cornea. Br J Ophthalmol. 1977;61(10):646–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riss B, Riss P. Corneal sensitivity in pregnancy. Ophthalmologica. 1981;183(2):57–62.

    Article  CAS  PubMed  Google Scholar 

  22. Gass JD. Central serous chorioretinopathy and white subretinal exudation during pregnancy. Arch Ophthalmol. 1991;109(5):677–81.

    Article  CAS  PubMed  Google Scholar 

  23. Klein BE, Moss SE, Klein R. Effect of pregnancy on progression of diabetic retinopathy. Diabetes Care. 1990;13(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  24. Chan WC, Lim LT, Quinn MJ, Knox FA, McCance D, Best RM. Management and outcome of sight-threatening diabetic retinopathy in pregnancy. Eye (London, England). 2004;18(8):826–32.

    Article  CAS  Google Scholar 

  25. Dinn RB, Harris A, Marcus PS. Ocular changes in pregnancy. Obstet Gynecol Surv. 2003;58(2):137–44.

    PubMed  Google Scholar 

  26. Ohrt V. The influence of pregnancy on diabetic retinopathy with special regard to the reversible changes shown in 100 pregnancies. Acta Ophthalmol. 1984;62(4):603–16.

    Article  CAS  Google Scholar 

  27. Smith W, Mitchell P, Wang JJ. Gender, oestrogen, hormone replacement and age-related macular degeneration: results from the Blue Mountains eye study. Aust N Z J Ophthalmol. 1997;25(Suppl 1):S13–5.

    Article  PubMed  Google Scholar 

  28. Schaumberg DA, Sullivan DA, Dana MR. Epidemiology of dry eye syndrome. Adv Exp Med Biol. 2002;506(Pt B):989–98.

    Article  PubMed  Google Scholar 

  29. Wolfs RC, Borger PH, Ramrattan RS, Klaver CC, Hulsman CA, Hofman A, et al. Changing views on open-angle glaucoma: definitions and prevalences--the Rotterdam study. Invest Ophthalmol Vis Sci. 2000;41(11):3309–21.

    CAS  PubMed  Google Scholar 

  30. Leske MC, Connell AM, Wu SY, Nemesure B, Li X, Schachat A, et al. Incidence of open-angle glaucoma: the Barbados eye studies. The Barbados Eye Studies Group. Arch Ophthalmol. 2001;119(1):89–95.

    CAS  PubMed  Google Scholar 

  31. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, Group BES. Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology. 2008;115(1):85–93.

    Article  PubMed  Google Scholar 

  32. Mukesh BN, Le A, Dimitrov PN, Ahmed S, Taylor HR, McCarty CA. Development of cataract and associated risk factors: the visual impairment project. Arch Ophthalmol. 2006;124(1):79–85.

    Article  PubMed  Google Scholar 

  33. Klein BE, Klein R, Lee KE. Incidence of age-related cataract: the Beaver Dam Eye Study. Arch Ophthalmol. 1998;116(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  34. Cahill M, O’Keefe M, Acheson R, Mulvihill A, Wallace D, Mooney D. Classification of the spectrum of Coats’ disease as subtypes of idiopathic retinal telangiectasis with exudation. Acta Ophthalmol Scand. 2001;79(6):596–602.

    Article  CAS  PubMed  Google Scholar 

  35. Shields JA, Shields CL, Honavar SG, Demirci H. Clinical variations and complications of coats disease in 150 cases: the 2000 Sanford Gifford Memorial Lecture. Am J Ophthalmol. 2001;131(5):561–71.

    Article  CAS  PubMed  Google Scholar 

  36. Smithen LM, Brown GC, Brucker AJ, Yannuzzi LA, Klais CM, Spaide RF. Coats’ disease diagnosed in adulthood. Ophthalmology. 2005;112(6):1072–8.

    Article  PubMed  Google Scholar 

  37. Southren AL, Gordon GG, Tochimoto S, Pinzon G, Lane DR, Stypulkowski W. Mean plasma concentration, metabolic clearance and basal plasma production rates of testosterone in normal young men and women using a constant infusion procedure: effect of time of day and plasma concentration on the metabolic clearance rate of testosterone. J Clin Endocrinol Metab. 1967;27(5):686–94.

    Article  CAS  PubMed  Google Scholar 

  38. Southren AL, Tochimoto S, Carmody NC, Isurugi K. Plasma production rates of testosterone in normal adult men and women and in patients with the syndrome of feminizing testes. J Clin Endocrinol Metab. 1965;25(11):1441–50.

    Article  CAS  PubMed  Google Scholar 

  39. Eisner A, Burke SN, Toomey MD. Visual sensitivity across the menstrual cycle. Vis Neurosci. 2004;21(4):513–31.

    Article  PubMed  Google Scholar 

  40. Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci. 2004;45(12):4611–6.

    Article  PubMed  Google Scholar 

  41. van Alphen B, Winkelman BH, Frens MA. Age- and sex-related differences in contrast sensitivity in C57BL/6 mice. Invest Ophthalmol Vis Sci. 2009;50(5):2451–8.

    Article  PubMed  Google Scholar 

  42. Won JY, Kim SE, Park YH. Effect of age and sex on retinal layer thickness and volume in normal eyes. Medicine. 2016;95(46):e5441.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Birch DG, Anderson JL. Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol. 1992;110(11):1571–6.

    Article  CAS  PubMed  Google Scholar 

  44. Vainio-Mattila B. The clinical electroretinogram; II. The difference between the electroretinogram in men and in women. Acta Ophthalmol. 1951;29(1):25–32.

    Article  CAS  Google Scholar 

  45. Zeidler I. The clinical electroretinogram. IX. The normal electroretinogram. Value of the b-potential in different age groups and its differences in men and women. Acta Ophthalmol. 1959;37:294–301.

    Article  CAS  Google Scholar 

  46. Ozawa GY, Bearse MA Jr, Harrison WW, Bronson-Castain KW, Schneck ME, Barez S, et al. Differences in neuroretinal function between adult males and females. Optom Vis Sci. 2014;91(6):602–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chaychi S, Polosa A, Lachapelle P. Differences in retinal structure and function between aging male and female Sprague-Dawley rats are strongly influenced by the Estrus Cycle. PLoS One. 2015;10(8):e0136056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nelson JF, Felicio LS. Hormonal influences on reproductive aging in mice. Ann N Y Acad Sci. 1990;592:8–12; discussion 44–51.

    Article  CAS  PubMed  Google Scholar 

  49. Tulchinsky D, Hobel CJ. Plasma human chorionic gonadotropin, estrone, estradiol, estriol, progesterone, and 17 alpha-hydroxyprogesterone in human pregnancy. 3. Early normal pregnancy. Am J Obstet Gynecol. 1973;117(7):884–93.

    Article  CAS  PubMed  Google Scholar 

  50. Pentikainen V, Erkkila K, Suomalainen L, Parvinen M, Dunkel L. Estradiol acts as a germ cell survival factor in the human testis in vitro. J Clin Endocrinol Metab. 2000;85(5):2057–67.

    CAS  PubMed  Google Scholar 

  51. Wang Q, Nicholson PH, Suuriniemi M, Lyytikainen A, Helkala E, Alen M, et al. Relationship of sex hormones to bone geometric properties and mineral density in early pubertal girls. J Clin Endocrinol Metab. 2004;89(4):1698–703.

    Article  CAS  PubMed  Google Scholar 

  52. Pansiot J, Mairesse J, Baud O. Protecting the developing brain by 17beta-estradiol. Oncotarget. 2017;8(6):9011–2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rittie L, Kang S, Voorhees JJ, Fisher GJ. Induction of collagen by estradiol: difference between sun-protected and photodamaged human skin in vivo. Arch Dermatol. 2008;144(9):1129–40.

    Article  CAS  PubMed  Google Scholar 

  54. Freeman EE, Munoz B, Schein OD, West SK. Hormone replacement therapy and lens opacities: the Salisbury Eye Evaluation project. Arch Ophthalmol. 2001;119(11):1687–92.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki T, Kinoshita Y, Tachibana M, Matsushima Y, Kobayashi Y, Adachi W, et al. Expression of sex steroid hormone receptors in human cornea. Curr Eye Res. 2001;22(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  56. Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  57. Ogueta SB, Schwartz SD, Yamashita CK, Farber DB. Estrogen receptor in the human eye: influence of gender and age on gene expression. Invest Ophthalmol Vis Sci. 1999;40(9):1906–11.

    CAS  PubMed  Google Scholar 

  58. Auw-Haedrich C, Feltgen N. Estrogen receptor expression in meibomian glands and its correlation with age and dry-eye parameters. Graefes Arch Clin Exp Ophthalmol. 2003;241(9):705–9.

    Article  CAS  PubMed  Google Scholar 

  59. Fuchsjager-Mayrl G, Nepp J, Schneeberger C, Sator M, Dietrich W, Wedrich A, et al. Identification of estrogen and progesterone receptor mRNA expression in the conjunctiva of premenopausal women. Invest Ophthalmol Vis Sci. 2002;43(9):2841–4.

    PubMed  Google Scholar 

  60. Marin-Castano ME, Elliot SJ, Potier M, Karl M, Striker LJ, Striker GE, et al. Regulation of estrogen receptors and MMP-2 expression by estrogens in human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44(1):50–9.

    Article  PubMed  Google Scholar 

  61. Cascio C, Russo D, Drago G, Galizzi G, Passantino R, Guarneri R, et al. 17beta-estradiol synthesis in the adult male rat retina. Exp Eye Res. 2007;85(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  62. Chan L, O’Malley BW. Mechanism of action of the sex steroid hormones (first of three parts). N Engl J Med. 1976;294(24):1322–8.

    Article  CAS  PubMed  Google Scholar 

  63. Singh S, Gupta PD. Induction of phosphoinositide-mediated signal transduction pathway by 17 beta-oestradiol in rat vaginal epithelial cells. J Mol Endocrinol. 1997;19(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  64. Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, Genazzani AR. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids. 2004;69(8–9):537–42.

    Article  CAS  PubMed  Google Scholar 

  65. Rocha EM, Wickham LA, da Silveira LA, Krenzer KL, Yu FS, Toda I, et al. Identification of androgen receptor protein and 5alpha-reductase mRNA in human ocular tissues. Br J Ophthalmol. 2000;84(1):76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tachibana M, Kobayashi Y, Kasukabe T, Kawajiri K, Matsushima Y. Expression of androgen receptor in mouse eye tissues. Invest Ophthalmol Vis Sci. 2000;41(1):64–6.

    CAS  PubMed  Google Scholar 

  67. Rocha FJ, Wickham LA, Pena JD, Gao J, Ono M, Lambert RW, et al. Influence of gender and the endocrine environment on the distribution of androgen receptors in the lacrimal gland. J Steroid Biochem Mol Biol. 1993;46(6):737–49.

    Article  CAS  PubMed  Google Scholar 

  68. Bigsby RM, Cardenas H, Caperell-Grant A, Grubbs CJ. Protective effects of estrogen in a rat model of age-related cataracts. Proc Natl Acad Sci U S A. 1999;96(16):9328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev. 2006;58(4):782–97.

    Article  CAS  PubMed  Google Scholar 

  70. Saartok T, Dahlberg E, Gustafsson JA. Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology. 1984;114(6):2100–6.

    Article  CAS  PubMed  Google Scholar 

  71. Purushottamachar P, Njar VC. A new simple and high-yield synthesis of 5alpha-dihydrotestosterone (DHT), a potent androgen receptor agonist. Steroids. 2012;77(14):1530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khandelwal P, Liu S, Sullivan DA. Androgen regulation of gene expression in human meibomian gland and conjunctival epithelial cells. Mol Vis. 2012;18:1055–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci. 2011;52(4):1938–78.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kang YS, Lee HS, Li Y, Choi W, Yoon KC. Manifestation of meibomian gland dysfunction in patients with Sjogren’s syndrome, non-Sjogren’s dry eye, and non-dry eye controls. Int Ophthalmol. 2018;38(3):1161–7.

    Article  PubMed  Google Scholar 

  75. Sullivan DA, Sullivan BD, Ullman MD, Rocha EM, Krenzer KL, Cermak JM, et al. Androgen influence on the meibomian gland. Invest Ophthalmol Vis Sci. 2000;41(12):3732–42.

    CAS  PubMed  Google Scholar 

  76. Schumacher H, Machemer R. [Experimental studies on the therapy of corneal lesions due to cortisone]. Klin Monbl Augenheilkd. 1966;148(1):121–6.

    Google Scholar 

  77. Tsai TH, Scheving LE, Scheving LA, Pauly JE. Sex differences in circadian rhythms of several variables in lymphoreticular organs, liver, kidney, and corneal epithelium in adult CD2F1 mice. Anat Rec. 1985;211(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  78. Yamamoto T, Terada N, Nishizawa Y, Petrow V. Angiostatic activities of medroxyprogesterone acetate and its analogues. Int J Cancer. 1994;56(3):393–9.

    Article  CAS  PubMed  Google Scholar 

  79. Jackson AC, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem. 2016;136(1):63–77.

    Article  PubMed  Google Scholar 

  80. Doonan F, O’Driscoll C, Kenna P, Cotter TG. Enhancing survival of photoreceptor cells in vivo using the synthetic progestin Norgestrel. J Neurochem. 2011;118(5):915–27.

    Article  CAS  PubMed  Google Scholar 

  81. Moussatche P, Lyons TJ. Non-genomic progesterone signalling and its non-canonical receptor. Biochem Soc Trans. 2012;40(1):200–4.

    Article  CAS  PubMed  Google Scholar 

  82. Petersen SL, Intlekofer KA, Moura-Conlon PJ, Brewer DN, Del Pino SJ, Lopez JA. Nonclassical progesterone signalling molecules in the nervous system. J Neuroendocrinol. 2013;25(11):991–1001.

    Article  CAS  PubMed  Google Scholar 

  83. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64(2):327–36.

    Article  CAS  PubMed  Google Scholar 

  84. Van Agtmael T, Bruckner-Tuderman L. Basement membranes and human disease. Cell Tissue Res. 2010;339(1):167–88.

    Article  CAS  PubMed  Google Scholar 

  85. Bai X, Dilworth DJ, Weng YC, Gould DB. Developmental distribution of collagen IV isoforms and relevance to ocular diseases. Matrix Biol. 2009;28(4):194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schittny JC, Yurchenco PD. Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol. 1989;1(5):983–8.

    Article  CAS  PubMed  Google Scholar 

  87. Leu ST, Batni S, Radeke MJ, Johnson LV, Anderson DH, Clegg DO. Drusen are cold spots for proteolysis: expression of matrix metalloproteinases and their tissue inhibitor proteins in age-related macular degeneration. Exp Eye Res. 2002;74(1):141–54.

    Article  CAS  PubMed  Google Scholar 

  88. Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  89. Nita M, Strzalka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monitor. 2014;20:1003–16.

    Article  CAS  Google Scholar 

  90. Cousins SW, Marin-Castano ME, Espinosa-Heidmann DG, Alexandridou A, Striker L, Elliot S. Female gender, estrogen loss, and sub-RPE deposit formation in aged mice. Invest Ophthalmol Vis Sci. 2003;44(3):1221–9.

    Article  PubMed  Google Scholar 

  91. Espinosa-Heidmann DG, Marin-Castano ME, Pereira-Simon S, Hernandez EP, Elliot S, Cousins SW. Gender and estrogen supplementation increases severity of experimental choroidal neovascularization. Exp Eye Res. 2005;80(3):413–23.

    Article  CAS  PubMed  Google Scholar 

  92. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  93. Elliot S, Catanuto P, Fernandez P, Espinosa-Heidmann D, Karl M, Korach K, et al. Subtype specific estrogen receptor action protects against changes in MMP-2 activation in mouse retinal pigmented epithelial cells. Exp Eye Res. 2008;86(4):653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, et al. Cytokines in proliferative vitreoretinopathy. Eye (London, England). 1991;5(Pt 6):686–93.

    Article  Google Scholar 

  95. Kimura K, Orita T, Fujitsu Y, Liu Y, Wakuta M, Morishige N, et al. Inhibition by female sex hormones of collagen gel contraction mediated by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2014;55(4):2621–30.

    Article  CAS  PubMed  Google Scholar 

  96. Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol. 1995;15(9):4971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paimela T, Ryhanen T, Mannermaa E, Ojala J, Kalesnykas G, Salminen A, et al. The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett. 2007;110(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  98. Kauffmann DJ, van Meurs JC, Mertens DA, Peperkamp E, Master C, Gerritsen ME. Cytokines in vitreous humor: interleukin-6 is elevated in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1994;35(3):900–6.

    CAS  PubMed  Google Scholar 

  99. Ambreen F, Ismail M, Qureshi, IZ. Association of gene polymorphism with serum levels of inflammatory and angiogenic factors in Pakistani patients with age-related macular degeneration. Mol. Vis. 2015; 21:985–99.

    Google Scholar 

  100. Ahn RS, Choi JH, Choi BC, Kim JH, Lee SH, Sung SS. Cortisol, estradiol-17beta, and progesterone secretion within the first hour after awakening in women with regular menstrual cycles. J Endocrinol. 2011;211(3):285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brynhildsen J. Combined hormonal contraceptives: prescribing patterns, compliance, and benefits versus risks. Ther Adv Drug Safety. 2014;5(5):201–13.

    Article  CAS  Google Scholar 

  102. Sech LA, Mishell DR Jr. Oral steroid contraception. Womens Health (London, England). 2015;11(6):743–8.

    Article  CAS  Google Scholar 

  103. Daniels K, Daugherty J, Jones J, Mosher W. Current contraceptive use and variation by selected characteristics among women aged 15–44: United States, 2011-2013. Natl Health Stat Rep. 2015(86):1–14.

    Google Scholar 

  104. Wang YE, Kakigi C, Barbosa D, Porco T, Chen R, Wang S, et al. Oral contraceptive use and prevalence of self-reported glaucoma or ocular hypertension in the United States. Ophthalmology. 2016;123(4):729–36.

    Article  PubMed  Google Scholar 

  105. Thapa R, Paudyal G. Central retinal vein occlusion in young women: rare cases with oral contraceptive pills as a risk factor. Nepal Med Coll J. 2009;11(3):209–11.

    CAS  PubMed  Google Scholar 

  106. Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE. Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology. 2007;114(2):253–62.

    Article  PubMed  Google Scholar 

  107. Aggarwal RS, Mishra VV, Aggarwal SV. Oral contraceptive pills: a risk factor for retinal vascular occlusion in in-vitro fertilization patients. J Hum Reprod Sci. 2013;6(1):79–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Giovannini A, Consolani A. Contraceptive-induced unilateral retinopathy. Ophthalmologica. 1979;179(5):302–5.

    Article  CAS  PubMed  Google Scholar 

  109. Pellegrini F, Interlandi E, Pavesio C, Ferreyra HA. We cannot see what she cannot ignore. Surv Ophthalmol. 2017;62:882–5.

    Article  PubMed  Google Scholar 

  110. Rush JA. Acute macular neuroretinopathy. Am J Ophthalmol. 1977;83(4):490–4.

    Article  CAS  PubMed  Google Scholar 

  111. Feskanich D, Cho E, Schaumberg DA, Colditz GA, Hankinson SE. Menopausal and reproductive factors and risk of age-related macular degeneration. Arch Ophthalmol. 2008;126(4):519–24.

    Article  PubMed  Google Scholar 

  112. Edwards DR, Gallins P, Polk M, Ayala-Haedo J, Schwartz SG, Kovach JL, et al. Inverse association of female hormone replacement therapy with age-related macular degeneration and interactions with ARMS2 polymorphisms. Invest Ophthalmol Vis Sci. 2010;51(4):1873–9.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cascio C, Deidda I, Russo D, Guarneri P. The estrogenic retina: the potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids. 2015;103:31–41.

    Article  CAS  PubMed  Google Scholar 

  114. Fliesler SJ, Bretillon L. The ins and outs of cholesterol in the vertebrate retina. J Lipid Res. 2010;51(12):3399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stork S, von Schacky C, Angerer P. The effect of 17beta-estradiol on endothelial and inflammatory markers in postmenopausal women: a randomized, controlled trial. Atherosclerosis. 2002;165(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  116. Elliot SJ, Catanuto P, Espinosa-Heidmann DG, Fernandez P, Hernandez E, Saloupis P, et al. Estrogen receptor beta protects against in vivo injury in RPE cells. Exp Eye Res. 2010;90(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  117. Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res. 2006;83(2):380–9.

    Article  CAS  PubMed  Google Scholar 

  118. Rohrer B, Matthes MT, LaVail MM, Reichardt LF. Lack of p75 receptor does not protect photoreceptors from light-induced cell death. Exp Eye Res. 2003;76(1):125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res. 2010;29(2):113–34.

    Article  PubMed  Google Scholar 

  120. Wang S, Wang B, Feng Y, Mo M, Du F, Li H, et al. 17beta-estradiol ameliorates light-induced retinal damage in Sprague-Dawley rats by reducing oxidative stress. J Mol Neurosci. 2015;55(1):141–51.

    Article  CAS  PubMed  Google Scholar 

  121. Tengstrand B, Ahlmen M, Hafstrom I. The influence of sex on rheumatoid arthritis: a prospective study of onset and outcome after 2 years. J Rheumatol. 2004;31(2):214–22.

    PubMed  Google Scholar 

  122. Seriolo B, Cutolo M, Garnero A, Accardo S. Relationships between serum 17 beta-oestradiol and anticardiolipin antibody concentrations in female patients with rheumatoid arthritis. Rheumatology (Oxford, England). 1999;38(11):1159–61.

    Article  CAS  Google Scholar 

  123. Tengstrand B, Carlstrom K, Fellander-Tsai L, Hafstrom I. Abnormal levels of serum dehydroepiandrosterone, estrone, and estradiol in men with rheumatoid arthritis: high correlation between serum estradiol and current degree of inflammation. J Rheumatol. 2003;30(11):2338–43.

    CAS  PubMed  Google Scholar 

  124. Nelson JL, Ostensen M. Pregnancy and rheumatoid arthritis. Rheum Dis Clin N Am. 1997;23(1):195–212.

    Article  CAS  Google Scholar 

  125. Sicotte NL, Liva SM, Klutch R, Pfeiffer P, Bouvier S, Odesa S, et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol. 2002;52(4):421–8.

    Article  CAS  PubMed  Google Scholar 

  126. Jorgensen C, Picot MC, Bologna C, Sany J. Oral contraception, parity, breast feeding, and severity of rheumatoid arthritis. Ann Rheum Dis. 1996;55(2):94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vignesh AP, Srinivasan R. Ocular manifestations of rheumatoid arthritis and their correlation with anti-cyclic citrullinated peptide antibodies. Clin Ophthalmol (Auckland, NZ). 2015;9:393–7.

    Google Scholar 

  128. Sivaraj RR, Durrani OM, Denniston AK, Murray PI, Gordon C. Ocular manifestations of systemic lupus erythematosus. Rheumatology (Oxford, England). 2007;46(12):1757–62.

    Article  CAS  Google Scholar 

  129. Ushiyama T, Inoue K, Nishioka J. Expression of estrogen receptor related protein (p29) and estradiol binding in human arthritic synovium. J Rheumatol. 1995;22(3):421–6.

    CAS  PubMed  Google Scholar 

  130. Ishizuka M, Hatori M, Suzuki T, Miki Y, Darnel AD, Tazawa C, et al. Sex steroid receptors in rheumatoid arthritis. Clin Sci (London, England: 1979). 2004;106(3):293–300.

    Article  CAS  Google Scholar 

  131. Tamir S, Izrael S, Vaya J. The effect of oxidative stress on ERalpha and ERbeta expression. J Steroid Biochem Mol Biol. 2002;81(4–5):327–32.

    Article  CAS  PubMed  Google Scholar 

  132. Goldberg SB, Supko JG, Neal JW, Muzikansky A, Digumarthy S, Fidias P, et al. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J Thorac Oncol. 2012;7(10):1602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 2014;10(8):1403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rangwala R, Chang YC, Hu J, Algazy KM, Evans TL, Fecher LA, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10(8):1369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosenthal AR, Kolb H, Bergsma D, Huxsoll D, Hopkins JL. Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci. 1978;17(12):1158–75.

    CAS  PubMed  Google Scholar 

  137. Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC, et al. Chloroquine and hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide 1A2. J Pharm Sci. 2016;105(2):884–90.

    Article  CAS  PubMed  Google Scholar 

  138. Graham CM, Blach RK. Indomethacin retinopathy: case report and review. Br J Ophthalmol. 1988;72(6):434–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Foran JM, Rohatiner AZ, Cunningham D, Popescu RA, Solal-Celigny P, Ghielmini M, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol. 2000;18(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  140. Tokai R, Ikeda T, Miyaura T, Sato K. Interferon-associated retinopathy and cystoid macular edema. Arch Ophthalmol. 2001;119(7):1077–9.

    CAS  PubMed  Google Scholar 

  141. Perez-Alvarez AF, Jimenez-Alonso J, Reche-Molina I, Leon-Ruiz L, Hidalgo-Tenorio C, Sabio JM. Retinal vasculitis and vitreitis in a patient with chronic hepatitis C virus. Arch Intern Med. 2001;161(18):2262.

    Article  CAS  PubMed  Google Scholar 

  142. Jain K, Lam WC, Waheeb S, Thai Q, Heathcote J. Retinopathy in chronic hepatitis C patients during interferon treatment with ribavirin. Br J Ophthalmol. 2001;85(10):1171–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ponjavic V, Granse L, Stigmar EB, Andreasson S. Reduced full-field electroretinogram (ERG) in a patient treated with methotrexate. Acta Ophthalmol Scand. 2004;82(1):96–9.

    Article  PubMed  Google Scholar 

  144. Bridges CC, El-Sherbeny A, Ola MS, Ganapathy V, Smith SB. Transcellular transfer of folate across the retinal pigment epithelium. Curr Eye Res. 2002;24(2):129–38.

    Article  PubMed  Google Scholar 

  145. Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE. Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: the Women’s Antioxidant and Folic Acid Cardiovascular Study. Arch Intern Med. 2009;169(4):335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sharma T, Shah N, Rao M, Gopal L, Shanmugam MP, Gopalakrishnan M, et al. Visual outcome after discontinuation of corticosteroids in atypical severe central serous chorioretinopathy. Ophthalmology. 2004;111(9):1708–14.

    Article  PubMed  Google Scholar 

  147. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496(7446):513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krementsov DN, Case LK, Hickey WF, Teuscher C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB J. 2015;29(8):3446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Annweiler C, Drouet M, Duval GT, Pare PY, Leruez S, Dinomais M, et al. Circulating vitamin D concentration and age-related macular degeneration: systematic review and meta-analysis. Maturitas. 2016;88:101–12.

    Article  CAS  PubMed  Google Scholar 

  151. Cutolo M. Further emergent evidence for the vitamin D endocrine system involvement in autoimmune rheumatic disease risk and prognosis. Ann Rheum Dis. 2013;72(4):473–5.

    Article  CAS  PubMed  Google Scholar 

  152. Kragt J, van Amerongen B, Killestein J, Dijkstra C, Uitdehaag B, Polman C, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler. 2009;15(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  153. Vasile M, Corinaldesi C, Antinozzi C, Crescioli C. Vitamin D in autoimmune rheumatic diseases: a view inside gender differences. Pharmacol Res. 2017;117:228–41.

    Article  CAS  PubMed  Google Scholar 

  154. McGeer PL, Sibley J. Sparing of age-related macular degeneration in rheumatoid arthritis. Neurobiol Aging. 2005;26(8):1199–203.

    Article  PubMed  Google Scholar 

  155. Keenan TD, Goldacre R, Goldacre MJ. Associations between age-related macular degeneration, osteoarthritis and rheumatoid arthritis: record linkage study. Retina (Philadelphia, PA). 2015;35(12):2613–8.

    Article  Google Scholar 

  156. Stubelius A, Andersson A, Islander U, Carlsten H. Ovarian hormones in innate inflammation. Immunobiology. 2017;222(8–9):878–83.

    Article  CAS  PubMed  Google Scholar 

  157. Churchill WH Jr, Weintraub RM, Borsos T, Rapp HJ. Mouse complement: the effect of sex hormones and castration on two of the late-acting components. J Exp Med. 1967;125(4):657–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Beurskens FJ, Kuenen JD, Hofhuis F, Fluit AC, Robins DM, Van Dijk H. Sex-limited protein: in vitro and in vivo functions. Clin Exp Immunol. 1999;116(3):395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Buras JA, Rice L, Orlow D, Pavlides S, Reenstra WR, Ceonzo K, et al. Inhibition of C5 or absence of C6 protects from sepsis mortality. Immunobiology. 2004;209(8):629–35.

    Article  CAS  PubMed  Google Scholar 

  160. Ong GL, Mattes MJ. Mouse strains with typical mammalian levels of complement activity. J Immunol Methods. 1989;125(1–2):147–58.

    Article  CAS  PubMed  Google Scholar 

  161. Ong GL, Baker AE, Mattes MJ. Analysis of high complement levels in Mus hortulanus and BUB mice. J Immunol Methods. 1992;154(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  162. Kotimaa J, Klar-Mohammad N, Gueler F, Schilders G, Jansen A, Rutjes H, et al. Sex matters: systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol Immunol. 2016;76:13–21.

    Article  CAS  PubMed  Google Scholar 

  163. Kobayashi K, Kobayashi H, Ueda M, Honda Y. Estrogen receptor expression in bovine and rat retinas. Invest Ophthalmol Vis Sci. 1998;39(11):2105–10.

    CAS  PubMed  Google Scholar 

  164. Munaut C, Lambert V, Noel A, Frankenne F, Deprez M, Foidart JM, et al. Presence of oestrogen receptor type beta in human retina. Br J Ophthalmol. 2001;85(7):877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mausumi Bandyopadhyay for her expertise and effort in data generated in Figs. 11.1 and 11.2, as well as her overall intellectual expertise, Lara Seidman for her technical assistance with Figs. 11.1 and 11.2, and Kathleen Brady for critical review.

The authors’ responsibilities were as follows: E.O. and G.S. conducted research and analyzed data; G.S wrote manuscript; B.R. assisted with research design and manuscript edits; and all authors read and approved the final manuscript.

This work was sponsored in part by the National Institutes of Health (NIH) K12HD055885 Building Interdisciplinary Research Careers in Women’s Health (BIRCWH) fellowship. Additional research was supported by the National Institutes of Health (NIH) (R01EY019320), Department of Veterans Affairs (I01 RX000444), and the South Carolina SmartState Endowment. All animal experiments were performed in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, and were approved by the University Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gloriane Schnabolk or Bärbel Rohrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schnabolk, G., Obert, E., Rohrer, B. (2020). Sex Related Differences in Retinal Pigment Epithelium and Retinal Disease. In: Klettner, A., Dithmar, S. (eds) Retinal Pigment Epithelium in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28384-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28384-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28383-4

  • Online ISBN: 978-3-030-28384-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics