Skip to main content

Numerical Algorithms for HPC Systems and Fault Tolerance

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2019)

Abstract

We discuss in the paper the influence exerted by applied mathematics techniques on the progress of the architecture and performance of computing systems. We focus on computational algorithms aimed at solving the problem of fault tolerance which is topical for future exaFLOPS and super-exaFLOPS systems.

This work was supported by the Russian Foundation for Basic Research (project No. 17-07-01604-a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Principle of “geometric parallelism”, also referred to as domain decomposition, is a parallelization method widely used in solving problems of mathematical physics. As specified by this technique, the computational domain is divided into subdomains, then each processor executes the same code on its own individual subdomain and exchanges boundary data with neighboring processors.

References

  1. Davydov, A.A., Lacis, A.O., Lutsky, A.E., Smoliyanov, Yu.P., Chetverushkin, B.N., Shilnikov, E.V.: The hybrid supercomputer MVS-express. Doklady Math. 82(2), 816–819 (2017). https://doi.org/10.1134/S1064562410050364

    Article  Google Scholar 

  2. Gibridnyi vychislitel’nyi klaster k-100 [hybrid computer cluster k-100]. www.kiam.ru/MVS/resourses/k100.html

  3. Gorobets, A.V., Sukov, S.A., Zhelezniakov, A.O., Bogdanov, P.B., Chetverushkin, B.N.: Rasshirenie dvukhurovnevogo rasparallelivaniia MPI+openmp posredstvom opencl dlia gazodinamicheskikh raschetov na geterogennykh sistemakh [extension of two-level parallelization MPI+openmp through opencl for hydrodynamic computations on heterogeneous systems]. Vestnik Iuzhno-Ural’skogo gosudarstvennogo universiteta 9, 76–86 (2011)

    Google Scholar 

  4. Bland, W.: Int. J. High Perform. Comput. Appl. 27(3), 244–254 (2013)

    Article  Google Scholar 

  5. Cappello, F.: Int. J. High Perform. Comput. Appl. 23(3), 212–226 (2009)

    Article  Google Scholar 

  6. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Int. J. High Perform. Comput. Appl. 1(1), 1–28 (2014)

    Google Scholar 

  7. Snir, M., et al.: Int. J. High Perform. Comput. Appl. 28(2), 129–173 (2014)

    Article  Google Scholar 

  8. Chetverushkin, B.N.: Kineticheskie skhemy i kvazigazodinamicheskaia sistema uravnenii [Kinetic schemes and quasi-gasdynamic system of equations]. Max Press, Moscow (2004)

    Google Scholar 

  9. Chetverushkin, B.N.: Resolution limits of continuous media mode and their mathematical formulations. Math. Models Comput. Simul. 5, 266–279 (2013). https://doi.org/10.1134/S2070048213030034

    Article  MathSciNet  Google Scholar 

  10. Sedov, L.I.: Metody podobiia i razmernosti v mekhanike. [Similarity and dimensionality methods in mechanics]. Nauka, Moscow (1977)

    Google Scholar 

  11. Zlotnik, A.A., Chetverushkin, B.N.: Entropy balance for theone-dimensional hyperbolic quasi-gasdynamic system of equations. Doklady Math. 95(3), 276–281 (2017). https://doi.org/10.1134/S106456241703005X

    Article  MathSciNet  MATH  Google Scholar 

  12. Chetverushkin, B.N., Zlotnik, A.A.: On some properties of multidimensional hyperbolic quasi-gasdynamic systems of equations. Russ. J. Math. Phys. 24, 299–309 (2017). https://doi.org/10.1134/S1061920817030037

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Aschenzo, N., Chetverushkin, B.N., Saveliev, V.I.: On an algorithm for solving parabolic and elliptic equations. Comp. Math. Math. Phys. 55(8), 1290–1297 (2015). https://doi.org/10.1134/S0965542515080035

    Article  MathSciNet  MATH  Google Scholar 

  14. Chetverushkin, B., D’Ascenzo, N., Saveliev, A., Saveliev, V.: A kinetic model for magnetogasdynamics. Math. Mod. Comp. Simul. 9(5), 544–553 (2017). https://doi.org/10.1134/S2070048217050039

    Article  MathSciNet  MATH  Google Scholar 

  15. Zlotnik, A.A., Chetverushkin, B.N.: O parabolichnosti kvazigazo-dinamicheskoi sistemy uravnenii, ee giperbolicheskoi 2-go poriadka modifikatsii i ustoichivosti malykh vozmushchenii dlia nikh [on parabolicity of quasi-gasdynamic system of equations, its 2nd order hyperbolic modification, and stability of small perturbations for them]. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, pp. 445–472 (2008)

    Google Scholar 

  16. Chetverushkin, B.N., Yakobovskiy, M.V.: Vychislitel’nye algoritmy i otkazoustoichivost’ giperekzaflopsnykh vychislitel’nykh sistem [computational algorithms and fault-tolerance of hyper-exaflops computing systems]. Doklady Akademii nauk [Proc. Russ. Acad. Sci.] 472(1), 1–5 (2017). https://doi.org/10.7868/S0869565217010042

    Article  Google Scholar 

  17. Bondarenko, A.A., Yakobovskiy, M.V.: Modelirovanie otkazov v vysoko-proizvoditel’nykh vychislitel’nykh sistemakh v ramkakh standarta mpi i ego rasshireniia ulfm. [simulation of failures in high-performance computing systems within the mpi standard and its ulfm extension]. Vestnik Iuzhno-Ural’skogo gosudarstvennogo universiteta 4(3), 5–12 (2015). www.mathnet.ru/links/76f8ebac383f6603304d157a36123407/vyurv1.pdf

  18. Bondarenko, A.A., Kornilina, M.A., Yakobovskiy, M.V.: Fault tolerant algorithm for HPC. In: Supercomputing in Scientific and Industrial Problems KIAM RAS, p. 8 (2016). www.kiam.ru/SSIP/SSIP_abstracts.pdf#page=9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Kornilina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chetverushkin, B.N., Yakobovskiy, M.V., Kornilina, M.A., Semenova, A.V. (2019). Numerical Algorithms for HPC Systems and Fault Tolerance. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2019. Communications in Computer and Information Science, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-030-28163-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28163-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28162-5

  • Online ISBN: 978-3-030-28163-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics