Skip to main content

Osteopathic Pain Management and Cardiovascular Diseases

  • Reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

Increasing age, obesity, smoking, and depression have been common overlapped risk factors between cardiovascular diseases (CVD) and chronic musculoskeletal pain (CMP) conditions, in the last decade. CMP prevalence is estimated from 19% to 30%. Percentage increases with increasing age after >65 years old. It is associated with the development of CVD.

Literature shows an association between CMP and the increased risk of mortality. This is secondary to cardiovascular (CV) damages.

Osteopathic manipulative treatment (OMT) is an approach focused on the management of CMP which emphasizes the role of musculoskeletal system (MSs) both in health and sickness. OMT improves quality of life and functional status in patients suffering from chronic pain but also suffering from physiological parameters as heart rate variability or respiratory volumes.

This chapter aims at illustrating the osteopathic management of pain with specific focus on implications of CVD on mechanism of pain and how it can be helpful as a multidisciplinary approach in CVD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

Ang-II:

Angiotensin-II

CABG:

Coronary artery bypass graft

CMP:

Chronic musculoskeletal pain

CNS:

Central nervous system

CP:

Chronic pain

CV:

Cardiovascular

CVD:

Cardiovascular disease

DH:

Dorsal horn

DRG:

Dorsal root ganglion

ECM:

Extracellular matrix

EMG:

Electromyography

FNE:

Free nerve ending

GC:

Glucocorticoids

HRV:

Heart rate variability

IC:

Insular cortex

LBP:

Low back pain

MS:

Musculoskeletal

MSNA:

Muscle sympathetic nervous activity

MSs:

Musculoskeletal system

NHS:

National health systems

NMDA:

N-methyl-D-aspartate

NTS:

Nucleus tractus solitarius

OMT:

Osteopathic manipulative treatment

PAG:

Periaqueductal gray matter

PFC:

Prefrontal cortex

PGE:

Prostaglandine

PM:

Pain matrix

QoL:

Quality of life

SBP:

Sub-acute pain

SD:

Somatic dysfunction

SMA:

Supplementary motor area

SNS:

Sympathetic nervous system

SP:

Substantia P

TH:

Thalamus

TRL:

Toll-like receptor

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052. Epub 2017 May 17

    Article  PubMed  PubMed Central  Google Scholar 

  2. www.who.int/nmh/publications/ncd_report2010/en/

  3. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1545–602. https://doi.org/10.1016/S0140-6736(16)31678-6.

    Article  Google Scholar 

  4. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, et al. European guidelines on cardiovascular disease prevention in clinical practice. Rev Esp Cardiol (Engl Ed). 2016;69(10):939. https://doi.org/10.1016/j.rec.2016.09.009.

    Article  Google Scholar 

  5. Piepoli MF, Corrà U, Adamopoulos S, Benzer W, Bjarnason-Wehrens B, Cupples M, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery: a policy statement from the cardiac rehabilitation section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. Eur J Prev Cardiol. 2014;21(6):664–81. https://doi.org/10.1177/2047487312449597.

    Article  PubMed  Google Scholar 

  6. Shields GE, Wells A, Doherty P, Heagerty A, Buck D, Davies LM. Cost-effectiveness of cardiac rehabilitation: a systematic review. Heart. 2018.;pii: heartjnl-2017-312809; https://doi.org/10.1136/heartjnl-2017-312809.

  7. Mansfield KE, Sim J, Jordan JL, Jordan KP. A systematic review and meta-analysis of the prevalence of chronic widespread pain in the general population. Pain. 2016;157(1):55–64. https://doi.org/10.1097/j.pain.0000000000000314.

    Article  PubMed  Google Scholar 

  8. Elzahaf RA, Tashani OA, Unsworth BA, Johnson MI. The prevalence of chronic pain with an analysis of countries with a human development index less than 0.9: a systematic review without meta-analysis. Curr Med Res Opin. 2012;28(7):1221–9. https://doi.org/10.1185/03007995.2012.703132.

    Article  PubMed  Google Scholar 

  9. Leadley RM, Armstrong N, Lee YC, Allen A, Kleijnen J. Chronic diseases in the European Union: the prevalence and health cost implications of chronic pain. J Pain Palliat Care Pharmacother. 2012;26(4):310–25. https://doi.org/10.3109/15360288.2012.736933.

    Article  CAS  PubMed  Google Scholar 

  10. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333.

    Article  PubMed  Google Scholar 

  11. Docking RE, Fleming J, Brayne C, Zhao J, Macfarlane GJ, Jones GT. Epidemiology of back pain in older adults: prevalence and risk factors for back pain onset. Rheumatology (Oxford). 2011;50(9):1645–53. https://doi.org/10.1093/rheumatology/ker175.

    Article  Google Scholar 

  12. Andrews P, Steultjens M, Riskowski J. Chronic widespread pain prevalence in the general population: a systematic review. Eur J Pain. 2018;22(1):5–18. https://doi.org/10.1002/ejp.1090.

    Article  CAS  PubMed  Google Scholar 

  13. Manchikanti L, Singh V, Falco FJ, Benyamin RM, Hirsch JA. Epidemiology of low back pain in adults. Neuromodulation. 2014;17(Suppl 2):3–10. https://doi.org/10.1111/ner.12018.

    Article  PubMed  Google Scholar 

  14. Andersson HI. Increased mortality among individuals with chronic widespread pain relates to lifestyle factors: a prospective population-based study. Disabil Rehabil. 2009;31(24):1980–7. https://doi.org/10.3109/09638280902874154.

    Article  PubMed  Google Scholar 

  15. Ryan CG, McDonough S, Kirwan JP, Leveille S, Martin DJ. An investigation of association between chronic musculoskeletal pain and cardiovascular disease in the Health Survey for England (2008). Eur J Pain. 2014;18(5):740–50. https://doi.org/10.1002/j.1532-2149.2013.00405.x.

    Article  CAS  PubMed  Google Scholar 

  16. Fayaz A, Ayis S, Panesar SS, Langford RM, Donaldson LJ. Assessing the relationship between chronic pain and cardiovascular disease: a systematic review and meta-analysis. Scand J Pain. 2016;13: 76–90. https://doi.org/10.1016/j.sjpain.2016.06.005.

    Article  PubMed  Google Scholar 

  17. Tick H, Nielsen A, Pelletier KR, Bonakdar R, Simmons S, Glick R, et al. Evidence-based nonpharmacologic strategies for comprehensive pain care: the consortium pain task force white paper. Pain task force of the academic consortium for integrative medicine and health. Explore (NY). 2018;14(3):177–211. https://doi.org/10.1016/j.explore.2018.02.001.

    Article  Google Scholar 

  18. Chila A. Foundations of osteopathic medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  19. Slattengren AH, Nissly T, Blustin J, Bader A, Westfall E. Best uses of osteopathic manipulation. J Fam Pract. 2017;66(12):743–7.

    PubMed  Google Scholar 

  20. IASP. Pain terms: a list with definitions and notes on usage: recommended by the IASP Subcommittee on taxonomy. Pain. 1979;6:249.

    Google Scholar 

  21. Cohen M, Quintner J, van Rysewyk S. Reconsidering the International Association for the Study of Pain definition of pain. Pain Rep. 2018;3(2):e634. https://doi.org/10.1097/PR9.0000000000000634.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khalid S, Tubbs RS. Neuroanatomy and neuropsychology of pain. Cureus. 2017;9(10):e1754. https://doi.org/10.7759/cureus.1754.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Loeser JD, Melzack R. Pain: an overview. Lancet. 1999;353(9164):1607–9.

    Article  CAS  PubMed  Google Scholar 

  24. Collins SL, Moore RA, McQuay HJ. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72(1–2):95–7.

    Article  CAS  PubMed  Google Scholar 

  25. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15. https://doi.org/10.1016/j.pain.2010.09.030.

    Article  PubMed  Google Scholar 

  26. Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 2009;32(12):611–8. https://doi.org/10.1016/j.tins.2009.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brierley SM. Molecular basis of mechanosensitivity. Auton Neurosci. 2010;153(1–2):58–68. https://doi.org/10.1016/j.autneu.2009.07.017.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Zhao E, Winkelstein BA. A nociceptive role for integrin signaling in pain after mechanical injury to the spinal facet capsular ligament. Ann Biomed Eng. 2017;45(12):2813–25. https://doi.org/10.1007/s10439-017-1917-2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim DS, Figueroa KW, Li KW, Boroujerdi A, Yolo T, Luo ZD. Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors [corrected]. Pain. 2009;143(1–2):114–22. https://doi.org/10.1016/j.pain.2009.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reinhold AK, Batti L, Bilbao D, Buness A, Rittner HL, Heppenstall PA. Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain. PLoS One. 2015;10(4):e0123342. https://doi.org/10.1371/journal.pone.0123342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pace MC, Passavanti MB, De Nardis L, Bosco F, Sansone P, Pota V, et al. Nociceptor plasticity: a closer look. J Cell Physiol. 2018;233(4):2824–38. https://doi.org/10.1002/jcp.25993.

    Article  CAS  PubMed  Google Scholar 

  32. Bradesi S. Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol Motil. 2010;22(5):499–511. https://doi.org/10.1111/j.1365-2982.2010.01491.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. König C, Morch E, Eitner A, Möller C, Turnquist B, Schaible HG, Ebersberger A. Involvement of spinal IL-6 trans-signaling in the induction of hyperexcitability of deep dorsal horn neurons by spinal tumor necrosis factor-alpha. J Neurosci. 2016;36(38):9782–91. https://doi.org/10.1523/JNEUROSCI.4159-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alexander JK, DeVries AC, Kigerl KA, Dahlman JM, Popovich PG. Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav Immun. 2009;23(6):851–60. https://doi.org/10.1016/j.bbi.2009.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Basso L, Lapointe TK, Iftinca M, Marsters C, Hollenberg MD, Kurrasch DM, Altier C. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proc Natl Acad Sci USA. 2017;114(42):11235–40. https://doi.org/10.1073/pnas.1706053114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60(1):214–25. https://doi.org/10.1016/j.brainresrev.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;154(Suppl 1):S29–43. https://doi.org/10.1016/j.pain.2013.09.001.

    Article  PubMed  Google Scholar 

  38. Zhuo M. Contribution of synaptic plasticity in the insular cortex to chronic pain. Neuroscience. 2016;338:220–9. https://doi.org/10.1016/j.neuroscience.2016.08.014.

    Article  CAS  PubMed  Google Scholar 

  39. Ong WY, Stohler CS, Herr DR. Role of the prefrontal cortex in pain processing. Mol Neurobiol. 2018; https://doi.org/10.1007/s12035-018-1130-9.

  40. Vachon-Presseau E. Effects of stress on the corticolimbic system: implications for chronic pain. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017. pii: S0278-5846;(17):30598-5. https://doi.org/10.1016/j.pnpbp.2017.10.014.

  41. Boadas-Vaello P, Homs J, Reina F, Carrera A, Verdú E. Neuroplasticity of supraspinal structures associated with pathological pain. Anat Rec (Hoboken). 2017;300(8):1481–501. https://doi.org/10.1002/ar.23587.

    Article  Google Scholar 

  42. Sousa-Valente J, Brain SD. A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin Immunopathol. 2018;40(3):229–36. https://doi.org/10.1007/s00281-018-0673-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akaishi S, Ogawa R. Hyakusoku H keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses. 2008;71(1):32–8. https://doi.org/10.1016/j.mehy.2008.01.032.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein DS, McEwen B. Allostasis, homeostats, and the nature of stress. Stress. 2002;5(1):55–8.

    Article  PubMed  Google Scholar 

  45. http://apps.who.int/classifications/icd10/browse/2010/en#/M95-M99.

  46. Kuchera ML. Osteopathic manipulative medicine considerations in patients with chronic pain. J Am Osteopath Assoc. 2005;105(9 Suppl 4):S29–36.

    PubMed  Google Scholar 

  47. Cavalieri TA. Management of pain in older adults. J Am Osteopath Assoc. 2005;105(3 Suppl 1):S12–7.

    PubMed  Google Scholar 

  48. Leleszi JP, Lewandowski JG. Pain management in end-of-life care. J Am Osteopath Assoc. 2005;105(3 Suppl 1):S6–11.

    PubMed  Google Scholar 

  49. Miyagi M, Millecamps M, Danco AT, Ohtori S, Takahashi K, Stone LS. ISSLS prize winner: increased innervation and sensory nervous system plasticity in a mouse model of low back pain due to intervertebral disc degeneration. Spine (Phila Pa 1976). 2014;39(17):1345–54. https://doi.org/10.1097/BRS.0000000000000334.

    Article  Google Scholar 

  50. Micera A, Balzamino BO, Di Zazzo A, Biamonte F, Sica G, Bonini S. Toll-like receptors and tissue remodeling: the pro/cons recent findings. J Cell Physiol. 2016;231(3):531–44. https://doi.org/10.1002/jcp.25124.

    Article  CAS  PubMed  Google Scholar 

  51. Eitner A, Hofmann GO, Schaible HG. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front Mol Neurosci. 2017;10:349. https://doi.org/10.3389/fnmol.2017.00349.

    Article  PubMed  PubMed Central  Google Scholar 

  52. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C. Mechanisms of stress in the brain. Nat Neurosci. 2015;18(10):1353–63. https://doi.org/10.1038/nn.4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goldstein DS, Kopin IJ. Homeostatic systems, biocybernetics, and autonomic neuroscience. Auton Neurosci. 2017;208:15–28. https://doi.org/10.1016/j.autneu.2017.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stefanaki C, Pervanidou P, Boschiero D, Chrousos GP. Chronic stress and body composition disorders: implications for health and disease. Hormones (Athens). 2018;17(1):33–43. https://doi.org/10.1007/s42000-018-0023-7.

    Article  Google Scholar 

  55. Hashmi JA, Baliki MN, Huang L, Baria AT, Torbey S, Hermann KM, et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain. 2013;136(Pt 9):2751–68. https://doi.org/10.1093/brain/awt211.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015;86(3):646–64. https://doi.org/10.1016/j.neuron.2015.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilson IB, Cleary PD. Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA. 1995;273(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  58. Tough H, Siegrist J, Fekete C. Social relationships, mental health and wellbeing in physical disability: a systematic review. BMC Public Health. 2017;17(1):414. https://doi.org/10.1186/s12889-017-4308-6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Leadley RM, Armstrong N, Reid KJ, Allen A, Misso KV, Kleijnen J. Healthy aging in relation to chronic pain and quality of life in Europe. Pain Pract. 2014;14(6):547–58. https://doi.org/10.1111/papr.12125.

    Article  PubMed  Google Scholar 

  60. Strøm J, Bjerrum MB, Nielsen CV, Thisted CN, Nielsen TL, Laursen M, Jørgensen LB. Anxiety and depression in spine surgery-a systematic integrative review. Spine J. 2018;18(7):1272–85. https://doi.org/10.1016/j.spinee.2018.03.017.

    Article  PubMed  Google Scholar 

  61. Coppieters I, Ickmans K, Cagnie B, Nijs J, De Pauw R, Noten S, Meeus M. Cognitive performance is related to central sensitization and health-related quality of life in patients with chronic whiplash-associated disorders and fibromyalgia. Pain Physician. 2015;18(3):E389–401.

    PubMed  Google Scholar 

  62. Ysrraelit MC, Fiol MP, Gaitán MI, Correale J. Quality of life assessment in multiple sclerosis: different perception between patients and neurologists. Front Neurol. 2018;8:729. https://doi.org/10.3389/fneur.2017.00729.

    Article  PubMed  PubMed Central  Google Scholar 

  63. D’Alessandro G, Cerritelli F, Cortelli P. Sensitization and interoception as key neurological concepts in osteopathy and other manual medicines. Front Neurosci. 2016;10:100. https://doi.org/10.3389/fnins.2016.00100.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Esteves JE, Spence C. Developing competence in diagnostic palpation: perspectives from neuroscience and education. Int J Osteopath Med. 2014;17(1): 52–60. https://doi.org/10.1016/j.ijosm.2013.07.001.

    Article  Google Scholar 

  65. Fingleton C, Smart K, Moloney N, Fullen BM, Doody C. Pain sensitization in people with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2015;23(7):1043–56. https://doi.org/10.1016/j.joca.2015.02.163.

    Article  CAS  Google Scholar 

  66. Corrêa JB, Costa LO, de Oliveira NT, Sluka KA, Liebano RE. Central sensitization and changes in conditioned pain modulation in people with chronic nonspecific low back pain: a case-control study. Exp Brain Res. 2015;233(8):2391–9. https://doi.org/10.1007/s00221-015-4309-6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Castien RF, van der Wouden JC, De Hertogh W. Pressure pain thresholds over the cranio-cervical region in headache: a systematic review and meta-analysis. J Headache Pain. 2018;19(1):9. https://doi.org/10.1186/s10194-018-0833-7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tozzi P. A unifying neuro-fasciagenic model of somatic dysfunction – underlying mechanisms and treatment – Part I. J Bodyw Mov Ther. 2015;19(2): 310–26. https://doi.org/10.1016/j.jbmt.2015.01.001.

    Article  PubMed  Google Scholar 

  69. Yagmur C, Akaishi S, Ogawa R, Guneren E. Mechanical receptor-related mechanisms in scar management: a review and hypothesis. Plast Reconstr Surg. 2010;126(2):426–34. https://doi.org/10.1097/PRS.0b013e3181df715d.

    Article  CAS  PubMed  Google Scholar 

  70. Lunghi C, Tozzi P, Fusco G. The biomechanical model in manual therapy: is there an ongoing crisis or just the need to revise the underlying concept and application? J Bodyw Mov Ther. 2016;20(4):784–99. https://doi.org/10.1016/j.jbmt.2016.01.004.

    Article  PubMed  Google Scholar 

  71. Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30. https://doi.org/10.1126/science.aam7928.

    Article  CAS  PubMed  Google Scholar 

  72. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Muñoz-Cánoves P. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm. 2013;2013:491497. https://doi.org/10.1155/2013/491497.

    Article  CAS  Google Scholar 

  73. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karkampouna S, Kreulen M, Obdeijn MC, Kloen P, Dorjée AL, Rivellese F, et al. Connective tissue degeneration: mechanisms of palmar fascia degeneration (Dupuytren’s disease). Curr Mol Biol Rep. 2016;2(3):133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi J, Li Q, Sheng M, Zheng M, Yu M, Zhang L. The role of TLR4 in M1 macrophage-induced epithelial-mesenchymal transition of peritoneal mesothelial cells. Cell Physiol Biochem. 2016;40(6):1538–48. https://doi.org/10.1159/000453204.

    Article  CAS  PubMed  Google Scholar 

  76. Lagrota-Candido J, Canella I, Pinheiro DF, Santos-Silva LP, Ferreira RS, Guimarães-Joca FJ, et al. Characteristic pattern of skeletal muscle remodelling in different mouse strains. Int J Exp Pathol. 2010;91(6):522–9. https://doi.org/10.1111/j.1365-2613.2010.00737.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Steward RL Jr, Cheng CM, Wang DL, LeDuc PR. Probing cell structure responses through a shear and stretching mechanical stimulation technique. Cell Biochem Biophys. 2010;56(2–3):115–24. https://doi.org/10.1007/s12013-009-9075-2.

    Article  CAS  PubMed  Google Scholar 

  78. Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. Biochim Biophys Acta. 2013;1833(12): 2596–607. https://doi.org/10.1016/j.bbamcr.2013.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Legerlotz K, Jones GC, Screen HR, Riley GP. Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes. Scand J Med Sci Sports. 2013;23(1):31–7. https://doi.org/10.1111/j.1600-0838.2011.01410.x.

    Article  CAS  PubMed  Google Scholar 

  80. Kuang R, Wang Z, Xu Q, Cai X, Liu T. Exposure to varying strain magnitudes influences the conversion of normal skin fibroblasts into hypertrophic scar cells. Ann Plast Surg. 2016;76(4):388–93. https://doi.org/10.1097/SAP.0000000000000654.

    Article  CAS  PubMed  Google Scholar 

  81. Guimberteau JC, Armstrong C. Architecture of human living Fascia. The extracellular matrix and cells revealed through endoscopy. Edinburgh: Handspring Publishing; 2015.

    Google Scholar 

  82. Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain. 2005;114(3):397–407.

    Article  CAS  PubMed  Google Scholar 

  83. Misra G, Coombes SA. Neuroimaging evidence of motor control and pain processing in the human midcingulate cortex. Cereb Cortex. 2015;25(7):1906–19. https://doi.org/10.1093/cercor/bhu001.

    Article  PubMed  Google Scholar 

  84. Oertel BG, Preibisch C, Martin T, Walter C, Gamer M, Deichmann R, Lötsch J. Separating brain processing of pain from that of stimulus intensity. Hum Brain Mapp. 2012;33(4):883–94. https://doi.org/10.1002/hbm.21256.

    Article  PubMed  Google Scholar 

  85. Coombes SA, Misra G. Pain and motor processing in the human cerebellum. Pain. 2016;157(1):117–27. https://doi.org/10.1097/j.pain.0000000000000337.

    Article  PubMed  Google Scholar 

  86. Borsook D, Upadhyay J, Chudler EH, Becerra L. A key role of the basal ganglia in pain and analgesia – insights gained through human functional imaging. Mol Pain. 2010;6:27. https://doi.org/10.1186/1744-8069-6-27.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Andreoli M, Marketkar T, Dimitrov E. Contribution of amygdala CRF neurons to chronic pain. Exp Neurol. 2017;298(Pt A):1–12. https://doi.org/10.1016/j.expneurol.2017.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Muscatell KA, Dedovic K, Slavich GM, Jarcho MR, Breen EC, Bower JE, et al. Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain Behav Immun. 2015;43:46–53. https://doi.org/10.1016/j.bbi.2014.06.201.

    Article  PubMed  Google Scholar 

  89. Kobuch S, Fazalbhoy A, Brown R, Henderson LA, Macefield VG. Central circuitry responsible for the divergent sympathetic responses to tonic muscle pain in humans. Hum Brain Mapp. 2017;38(2):869–81. https://doi.org/10.1002/hbm.23424.

    Article  PubMed  Google Scholar 

  90. Burke SR, Myers R, Zhang AL. A profile of osteopathic practice in Australia 2010–2011: a cross sectional survey. BMC Musculoskelet Disord. 2013;14:227. https://doi.org/10.1186/1471-2474-14-227.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fawkes CA, Leach CM, Mathias S, Moore AP. A profile of osteopathic care in private practices in the United Kingdom: a national pilot using standardised data collection. Man Ther. 2014;19(2):125–30. https://doi.org/10.1016/j.math.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  92. Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr Physiol. 2015;5(2):929–60. https://doi.org/10.1002/cphy.c140032.

    Article  PubMed  Google Scholar 

  93. Guić MM, Kosta V, Aljinović J, Sapunar D, Grković I. Characterization of spinal afferent neurons projecting to different chambers of the rat heart. Neurosci Lett. 2010;469(3):314–8. https://doi.org/10.1016/j.neulet.2009.12.016.

    Article  CAS  PubMed  Google Scholar 

  94. Fu LW, Longhurst JC. Bradykinin and thromboxane A2 reciprocally interact to synergistically stimulate cardiac spinal afferents during myocardial ischemia. Am J Physiol Heart Circ Physiol. 2010;298(1):H235–44. https://doi.org/10.1152/ajpheart.00782.2009.

    Article  CAS  PubMed  Google Scholar 

  95. Niu YL, Guo Z, Zhou RH. Up-regulation of TNF-alpha in neurons of dorsal root ganglia and spinal cord during coronary artery occlusion in rats. Cytokine. 2009;47(1):23–9. https://doi.org/10.1016/j.cyto.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  96. Jou CJ, Farber JP, Qin C, Foreman RD. Afferent pathways for cardiac-somatic motor reflexes in rats. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R2096–102.

    Article  CAS  PubMed  Google Scholar 

  97. Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37(4):871–81. https://doi.org/10.1523/JNEUROSCI.2235-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu XH, Sun N, Du JQ, Tang JS, Han M, Zhu JX, Huo FQ. Chemical lesioning and glutamate administration reveal a major role for the nucleus tractus solitarius in the cardiac-somatic reflex in rats. Neuroscience. 2012;207:326–32. https://doi.org/10.1016/j.neuroscience.2012.01.042.

    Article  CAS  PubMed  Google Scholar 

  99. Bastir M, García-Martínez D, Torres-Tamayo N, Sanchis-Gimeno JA, O’Higgins P, Utrilla C, et al. In vivo 3D analysis of thoracic kinematics: changes in size and shape during breathing and their implications for respiratory function in recent humans and fossil hominins. Anat Rec (Hoboken). 2017;300(2):255–64. https://doi.org/10.1002/ar.23503.

    Article  Google Scholar 

  100. Sverzellati N, Colombi D, Randi G, Pavarani A, Silva M, Walsh SL, et al. Computed tomography measurement of rib cage morphometry in emphysema. PLoS One. 2013;8(7):e68546. https://doi.org/10.1371/journal.pone.0068546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Priori R, Aliverti A, Albuquerque AL, Quaranta M, Albert P, Calverley PM. The effect of posture on asynchronous chest wall movement in COPD. J Appl Physiol. 1985;114(8):1066–75. 2013. https://doi.org/10.1152/japplphysiol.00414.2012.

    Article  Google Scholar 

  102. Hirjaková Z, Neumannová K, Kimijanová J, Šuttová K, Janura M, Hlavačka F. Breathing changes accompanying balance improvement during biofeedback. Neurosci Lett. 2017;651:30–5. https://doi.org/10.1016/j.neulet.2017.04.051.

    Article  CAS  PubMed  Google Scholar 

  103. Tully PJ, Cosh SM. Generalized anxiety disorder prevalence and comorbidity with depression in coronary heart disease: a meta-analysis. J Health Psychol. 2013;18(12):1601–16. https://doi.org/10.1177/1359105312467390.

    Article  PubMed  Google Scholar 

  104. Thombs BD, Bass EB, Ford DE, Stewart KJ, Tsilidis KK, Patel U, et al. Prevalence of depression in survivors of acute myocardial infarction. J Gen Intern Med. 2006;21(1):30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci. 2007;11(7):307–16.

    Article  PubMed  Google Scholar 

  106. Rosen SD, Paulesu E, Wise RJ, Camici PG. Central neural contribution to the perception of chest pain in cardiac syndrome X. Heart. 2002;87(6):513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pollatos O, Schandry R, Auer DP, Kaufmann C. Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Res. 2007;1141:178–87.

    Article  CAS  PubMed  Google Scholar 

  108. McKay LC, Critchley HD, Murphy K, Frackowiak RS, Corfield DR. Sub-cortical and brainstem sites associated with chemo-stimulated increases in ventilation in humans. NeuroImage. 2010;49(3):2526–35. https://doi.org/10.1016/j.neuroimage.2009.11.007.

    Article  PubMed  Google Scholar 

  109. Pattinson KT, Mitsis GD, Harvey AK, Jbabdi S, Dirckx S, Mayhew SD, et al. Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging. NeuroImage. 2009;44(2): 295–305. https://doi.org/10.1016/j.neuroimage.2008.09.007.

    Article  PubMed  Google Scholar 

  110. von Leupoldt A, Sommer T, Kegat S, Baumann HJ, Klose H, Dahme B, Büchel C. The unpleasantness of perceived dyspnea is processed in the anterior insula and amygdala. Am J Respir Crit Care Med. 2008;177(9):1026–32. https://doi.org/10.1164/rccm.200712-1821OC.

    Article  Google Scholar 

  111. Sakaki M, Yoo HJ, Nga L, Lee TH, Thayer JF, Mather M. Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage. 2016;139:44–52. https://doi.org/10.1016/j.neuroimage.2016.05.076.

    Article  PubMed  Google Scholar 

  112. Gray MA, Beacher FD, Minati L, Nagai Y, Kemp AH, Harrison NA, Critchley HD. Emotional appraisal is influenced by cardiac afferent information. Emotion. 2012;12(1):180–91. https://doi.org/10.1037/a0025083.

    Article  PubMed  Google Scholar 

  113. Pinsky MR. Cardiopulmonary interactions: physiologic basis and clinical applications. Ann Am Thorac Soc. 2018;15(Supplement_1):S45–8. https://doi.org/10.1513/AnnalsATS.201704-339FR.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Miller JD, Pegelow DF, Jacques AJ, Dempsey JA. Skeletal muscle pump versus respiratory muscle pump: modulation of venous return from the locomotor limb in humans. J Physiol. 2005;563(Pt 3): 925–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Balzan FM, da Silva RC, da Silva DP, Sanches PR, Tavares AM, Ribeiro JP, et al. Effects of diaphragmatic contraction on lower limb venous return and central hemodynamic parameters contrasting healthy subjects versus heart failure patients at rest and during exercise. Physiol Rep. 2014;2(12):e12216. https://doi.org/10.14814/phy2.12216.

    Article  PubMed  PubMed Central  Google Scholar 

  116. O-Yurvati AH, Carnes MS, Clearfield MB, Stoll ST, McConathy WJ. Hemodynamic effects of osteopathic manipulative treatment immediately after coronary artery bypass graft surgery. J Am Osteopath Assoc. 2005;105(10):475–81.

    PubMed  Google Scholar 

  117. Ardell JL, Armour JA. Neurocardiology: structure-based function. Compr Physiol. 2016;6(4):1635–53. https://doi.org/10.1002/cphy.c150046.

    Article  PubMed  Google Scholar 

  118. Nakano Y, Chayama K, Ochi H, Toshishige M, Hayashida Y, Miki D, et al. A nonsynonymous polymorphism in semaphorin 3A as a risk factor for human unexplained cardiac arrest with documented ventricular fibrillation. PLoS Genet. 2013;9(4):e1003364. https://doi.org/10.1371/journal.pgen.1003364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  120. Johnson AK, Zhang Z, Clayton SC, Beltz TG, Hurley SW, Thunhorst RL, Xue B. The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am J Physiol Regul Integr Comp Physiol. 2015;309(11):R1309–25. https://doi.org/10.1152/ajpregu.00037.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Leenen FHH, Blaustein MP, Hamlyn JM. Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect. 2017;6(7):R131–45. https://doi.org/10.1530/EC-17-0161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zucker IH, Xiao L, Haack KK. The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin Sci (Lond). 2014;126(10):695–706. https://doi.org/10.1042/CS20130294.

    Article  CAS  Google Scholar 

  123. Smith SA, Leal AK, Murphy MN, Downey RM, Mizuno M. Muscle mechanoreflex overactivity in hypertension: a role for centrally-derived nitric oxide. Auton Neurosci. 2015;188:58–63. https://doi.org/10.1016/j.autneu.2014.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. https://doi.org/10.1159/000339613.

    Article  CAS  PubMed  Google Scholar 

  125. García-Castellano JM, Díaz-Herrera P, Morcuende JA. Is bone a target-tissue for the nervous system? New advances on the understanding of their interactions. Iowa Orthop J. 2000;20:49–58.

    PubMed  PubMed Central  Google Scholar 

  126. Jewson JL, Lambert GW, Storr M, Gaida JE. The sympathetic nervous system and tendinopathy: a systematic review. Sports Med. 2015;45(5):727–43. https://doi.org/10.1007/s40279-014-0300-9.

    Article  PubMed  Google Scholar 

  127. Dirmeier M, Capellino S, Schubert T, Angele P, Anders S, Straub RH. Lower density of synovial nerve fibres positive for calcitonin gene-related peptide relative to substance P in rheumatoid arthritis but not in osteoarthritis. Rheumatology (Oxford). 2008;47(1):36–40.

    Article  CAS  Google Scholar 

  128. Grässel SG. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther. 2014;16(6):485.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci. 2014;182:4–14. https://doi.org/10.1016/j.autneu.2014.01.004.

    Article  CAS  PubMed  Google Scholar 

  130. Burton AR, Fazalbhoy A, Macefield VG. Sympathetic responses to noxious stimulation of muscle and skin. Front Neurol. 2016;7:109. https://doi.org/10.3389/fneur.2016.00109.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zegarra-Parodi R, Pazdernik VK, Roustit M, Park PY, Degenhardt BF. Effects of pressure applied during standardized spinal mobilizations on peripheral skin blood flow: a randomised cross-over study. Man Ther. 2016;21:220–6. https://doi.org/10.1016/j.math.2015.08.008.

    Article  PubMed  Google Scholar 

  132. Garg A, Xu D, Laurin A, Blaber AP. Physiological interdependence of the cardiovascular and postural control systems under orthostatic stress. Am J Physiol Heart Circ Physiol. 2014;307(2):H259–64. https://doi.org/10.1152/ajpheart.00171.2014.

    Article  CAS  PubMed  Google Scholar 

  133. Henley CE, Ivins D, Mills M, Wen FK, Benjamin BA. Osteopathic manipulative treatment and its relationship to autonomic nervous system activity as demonstrated by heart rate variability: a repeated measures study. Osteopath Med Prim Care. 2008;2:7. https://doi.org/10.1186/1750-4732-2-7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol. 2015;308(12):H1476–98. https://doi.org/10.1152/ajpheart.00859.2014.

    Article  CAS  PubMed  Google Scholar 

  135. Fu Y, Neugebauer V. Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci. 2008;28(15):3861–76. https://doi.org/10.1523/JNEUROSCI.0227-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tran L, Schulkin J, Greenwood-Van Meerveld B. Importance of CRF receptor-mediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain. Neuropsychopharmacology. 2014;39(11):2633–45. https://doi.org/10.1038/npp.2014.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Im E. Multi-facets of corticotropin-releasing factor in modulating inflammation and angiogenesis. J Neurogastroenterol Motil. 2015;21(1):25–32. https://doi.org/10.5056/jnm14076.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chao JT, Davis MJ. The roles of integrins in mediating the effects of mechanical force and growth factors on blood vessels in hypertension. Curr Hypertens Rep. 2011;13(6):421–9. https://doi.org/10.1007/s11906-011-0227-6.

    Article  CAS  PubMed  Google Scholar 

  139. Wang SS, Yan XB, Hofman MA, Swaab DF, Zhou JN. Increased expression level of corticotropin-releasing hormone in the amygdala and in the hypothalamus in rats exposed to chronic unpredictable mild stress. Neurosci Bull. 2010;26(4):297–303. https://doi.org/10.1007/s12264-010-0329-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389(10071):834–45. https://doi.org/10.1016/S0140-6736(16)31714-7.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Negrini D, Moriondo A. Lymphatic anatomy and biomechanics. J Physiol. 2011;589(Pt 12):2927–34. https://doi.org/10.1113/jphysiol.2011.206672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Klingler W, Velders M, Hoppe K, Pedro M, Schleip R. Clinical relevance of fascial tissue and dysfunctions. Curr Pain Headache Rep. 2014;18(8):439. https://doi.org/10.1007/s11916-014-0439-y.

    Article  CAS  PubMed  Google Scholar 

  143. Licciardone JC, Kearns CM, Hodge LM, Bergamini MV. Associations of cytokine concentrations with key osteopathic lesions and clinical outcomes in patients with nonspecific chronic low back pain: results from the OSTEOPATHIC trial. J Am Osteopath Assoc. 2012;112(9):596–605.

    Article  PubMed  Google Scholar 

  144. Meltzer KR, Standley PR. Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion. J Am Osteopath Assoc. 2007;107(12):527–36.

    PubMed  Google Scholar 

  145. Schander A, Padro D, King HH, Downey HF, Hodge LM. Lymphatic pump treatment repeatedly enhances the lymphatic and immune systems. Lymphat Res Biol. 2013;11(4):219–26. https://doi.org/10.1089/lrb.2012.0021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/S0140-6736(12)62167-9.

    Article  PubMed  Google Scholar 

  147. Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res Rev. 2011;67(1–2):119–46. https://doi.org/10.1016/j.brainresrev.2010.12.002.

    Article  PubMed  Google Scholar 

  148. Papa L, Mandara A, Bottali M, Gulisano V, Orfei S. A randomized control trial on the effectiveness of osteopathic manipulative treatment in reducing pain and improving the quality of life in elderly patients affected by osteoporosis. Clin Cases Miner Bone Metab. 2012;9(3):179–83.

    PubMed  PubMed Central  Google Scholar 

  149. Licciardone JC, Kearns CM, Minotti DE. Outcomes of osteopathic manual treatment for chronic low back pain according to baseline pain severity: results from the OSTEOPATHIC trial. Man Ther. 2013;18(6): 533–40. https://doi.org/10.1016/j.math.2013.05.006.

    Article  PubMed  Google Scholar 

  150. Licciardone JC, Kearns CM. Somatic dysfunction and its association with chronic low back pain, back-specific functioning, and general health: results from the OSTEOPATHIC trial. J Am Osteopath Assoc. 2012;112(7):420–8.

    PubMed  Google Scholar 

  151. Licciardone JC, Gatchel RJ, Kearns CM, Minotti DE. Depression, somatization, and somatic dysfunction in patients with nonspecific chronic low back pain: results from the OSTEOPATHIC trial. J Am Osteopath Assoc. 2012;112(12):783–91.

    PubMed  Google Scholar 

  152. Orrock PJ, Myers SP. Osteopathic intervention in chronic non-specific low back pain: a systematic review. BMC Musculoskelet Disord. 2013;14:129. https://doi.org/10.1186/1471-2474-14-129.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Franke H, Franke JD, Fryer G. Osteopathic manipulative treatment for nonspecific low back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2014;15:286. https://doi.org/10.1186/1471-2474-15-286.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Franke H, Franke JD, Belz S, Fryer G. Osteopathic manipulative treatment for low back and pelvic girdle pain during and after pregnancy: a systematic review and meta-analysis. J Bodyw Mov Ther. 2017;21(4):752–62. https://doi.org/10.1016/j.jbmt.2017.05.014.

    Article  PubMed  Google Scholar 

  155. Cerritelli F, Lacorte E, Ruffini N, Vanacore N. Osteopathy for primary headache patients: a systematic review. J Pain Res. 2017;10:601–11. https://doi.org/10.2147/JPR.S130501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lanaro D, Ruffini N, Manzotti A, Lista G. Osteopathic manipulative treatment showed reduction of length of stay and costs in preterm infants: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(12):e6408. https://doi.org/10.1097/MD.0000000000006408.

    Article  Google Scholar 

  157. Posadzki P, Lee MS, Ernst E. Osteopathic manipulative treatment for pediatric conditions: a systematic review. Pediatrics. 2013;132(1):140–52. https://doi.org/10.1542/peds.2012-3959.

    Article  PubMed  Google Scholar 

  158. Müller A, Franke H, Resch KL, Fryer G. Effectiveness of osteopathic manipulative therapy for managing symptoms of irritable bowel syndrome: a systematic review. J Am Osteopath Assoc. 2014;114(6):470–9. https://doi.org/10.7556/jaoa.2014.098.

    Article  PubMed  Google Scholar 

  159. Franke H, Hoesele K. Osteopathic manipulative treatment (OMT) for lower urinary tract symptoms (LUTS) in women. J Bodyw Mov Ther. 2013;17(1):11–8. https://doi.org/10.1016/j.jbmt.2012.05.001.

    Article  PubMed  Google Scholar 

  160. Craig A. How do you fell? An interoceptive moment with your neurobiological self. Princeton: Princeton University Press; 2015.

    Book  Google Scholar 

  161. Cerritelli F, Chiacchiaretta P, Gambi F, Ferretti A. Effect of continuous touch on brain functional connectivity is modified by the operator’s tactile attention. Front Hum Neurosci. 2017;11:368. https://doi.org/10.3389/fnhum.2017.00368.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Singh SK, Roy A. Assessment of heart rate variability in the patients suffering with chronic pain of musculoskeletal origin. Natl J Physiol Pharm Pharmacol. 2017;7(7):712–8. https://doi.org/10.5455/njppp.2017.7.0204803032017.

    Article  Google Scholar 

  163. Ruffini N, D’Alessandro G, Mariani N, Pollastrelli A, Cardinali L, Cerritelli F. Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial. Front Neurosci. 2015;9: 272. https://doi.org/10.3389/fnins.2015.00272.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Perlaki G, Orsi G, Schwarcz A, Bodi P, Plozer E, Biczo K, et al. Pain-related autonomic response is modulated by the medial prefrontal cortex: an ECG-fMRI study in men. J Neurol Sci. 2015;349(1–2):202–8. https://doi.org/10.1016/j.jns.2015.01.019.

    Article  PubMed  Google Scholar 

  165. Wieting JM, Beal C, Roth GL, Gorbis S, Dillard L, Gilliland D, Rowan J. The effect of osteopathic manipulative treatment on postoperative medical and functional recovery of coronary artery bypass graft patients. J Am Osteopath Assoc. 2013;113(5):384–93.

    PubMed  Google Scholar 

  166. Fraix M. Osteopathic manipulative treatment and vertigo: a pilot study. PM R. 2010;2(7):612–8. https://doi.org/10.1016/j.pmrj.2010.04.001.

    Article  PubMed  Google Scholar 

  167. Fraix M, Gordon A, Graham V, Hurwitz E, Seffinger MA. Use of the SMART balance master to quantify the effects of osteopathic manipulative treatment in patients with dizziness. J Am Osteopath Assoc. 2013;113(5):394–403.

    PubMed  Google Scholar 

  168. Papa L, Amodio A, Biffi F, Mandara A. Impact of osteopathic therapy on proprioceptive balance and quality of life in patients with dizziness. J Bodyw Mov Ther. 2017;21(4):866–72. https://doi.org/10.1016/j.jbmt.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  169. Riccelli R, Passamonti L, Toschi N, Nigro S, Chiarella G, Petrolo C, et al. Altered insular and occipital responses to simulated vertical self-motion in patients with persistent postural-perceptual dizziness. Front Neurol. 2017;8:529. https://doi.org/10.3389/fneur.2017.00529.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Ponzo V, Cinnera AM, Mommo F, Caltagirone C, Koch G, Tramontano M. Osteopathic manipulative therapy potentiates motor cortical plasticity. J Am Osteopath Assoc. 2018;118(6):396–402. https://doi.org/10.7556/jaoa.2018.084.

    Article  PubMed  Google Scholar 

  171. Fryer G, Pearce AJ. The effect of lumbosacral manipulation on corticospinal and spinal reflex excitability on asymptomatic participants. J Manip Physiol Ther. 2012;35(2):86–93. https://doi.org/10.1016/j.jmpt.2011.09.010.

    Article  Google Scholar 

  172. Zein-Hammoud M, Standley PR. Modeled osteopathic manipulative treatments: a review of their in vitro effects on fibroblast tissue preparations. J Am Osteopath Assoc. 2015;115(8):490–502. https://doi.org/10.7556/jaoa.2015.103.

    Article  PubMed  Google Scholar 

  173. Roncada G. Effects of osteopathic treatment on pulmonary function and chronic thoracic pain after coronary artery bypass graft surgery (OstinCaRe): study protocol for a randomised controlled trial. BMC Complement Altern Med. 2016;16(1):482.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liria Papa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Papa, L. (2020). Osteopathic Pain Management and Cardiovascular Diseases. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-28008-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28008-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28007-9

  • Online ISBN: 978-3-030-28008-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics