Skip to main content

Heart Activity and Cognition

  • Reference work entry
  • First Online:
Brain and Heart Dynamics
  • 843 Accesses

Abstract

Brain function and heart function deeply influence each other in both evident and more subtle ways. This is a reciprocal phenomenon that can happen at many levels. The following chapter will primarily focus on this bidirectional influence. We have decided to describe five physiopathological and psychopathological conditions in which a primary cardiovascular impairment causes a secondary dysfunction of cerebral cognitive activity or the opposite.

First, the consequences on brain cognition of two major heart dysfunctions, cardiac arrest and heart transplantation, have been analyzed. Second, we discussed how three severe and impairing psychopathological conditions, namely, autism spectrum disorders (ASD), intellectual disability (ID), and dementia, may have an extensive impact on the cardiac activity.

The co-occurrence of this double impairment, both on heart and cognition, has been explored from a biopsychosocial point of view. The biopsychosocial model helps to understand the complexity of the patient as an individual, considering him as a unique system rather than focusing on single diseases, in line with the idea that such systems are interdependent and not separated entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engel GL. The clinical application of the biopsychosocial model. Am J Psychiatry. 1980;137(5):535–44.

    CAS  Google Scholar 

  2. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21(1):1–10.

    Google Scholar 

  3. Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37(5):1211–6.

    PubMed  Google Scholar 

  4. Chalkias A, Xanthos T. Post-cardiac arrest brain injury: pathophysiology and treatment. J Neurol Sci [Internet]. 2012;315(1–2):1–8. https://doi.org/10.1016/j.jns.2011.12.007.

    Article  Google Scholar 

  5. Bartsch T, Döhring J, Reuter S, Finke C, Rohr A, Brauer H, et al. Selective neuronal vulnerability of human hippocampal CA1 neurons: lesion evolution, temporal course, and pattern of hippocampal damage in diffusion-weighted MR imaging. J Cereb Blood Flow Metab. 2015;35(11):1836–45.

    PubMed  PubMed Central  Google Scholar 

  6. Moulaert VRMP, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297–305.

    PubMed  Google Scholar 

  7. Steinbusch CVM, van Heugten CM, Rasquin SMC, Verbunt JA, Moulaert VRM. Cognitive impairments and subjective cognitive complaints after survival of cardiac arrest: a prospective longitudinal cohort study. Resuscitation [Internet]. 2017;120:132–7. https://doi.org/10.1016/j.resuscitation.2017.08.007.

    Article  Google Scholar 

  8. Polanowska KE, Sarzyns̈ka-Długosz IM, Paprot AE, Sikorska Ś, Seniów JB, Karpins̈ki G, et al. Neuropsychological and neurological sequelae of out-of-hospital cardiac arrest and the estimated need for neurorehabilitation: a prospective pilot study. Kardiol Pol. 2014;72(9):814–22.

    PubMed  Google Scholar 

  9. Ørbo M, Aslaksen PM, Larsby K, Schäfer C, Tande PM, Anke A. Alterations in cognitive outcome between 3 and 12 months in survivors of out-of-hospital cardiac arrest. Resuscitation [Internet]. 2016;105: 92–9. https://doi.org/10.1016/j.resuscitation.2016.05.017.

    Article  Google Scholar 

  10. Torgersen J, Strand K, Bjelland TW, Klepstad P, Kvåle R, SØreide E, et al. Cognitive dysfunction and health-related quality of life after a cardiac arrest and therapeutic hypothermia. Acta Anaesthesiol Scand. 2010;54(6):721–8.

    CAS  PubMed  Google Scholar 

  11. Jackson JC, Girard TD, Gordon SM, Thompson JL, Shintani AK, Thomason JWW, et al. Long-term cognitive and psychological outcomes in the awakening and breathing controlled trial. Am J Respir Crit Care Med. 2010;182(2):183–91.

    PubMed  PubMed Central  Google Scholar 

  12. Nedergaard HK, Jensen HI, Toft P. Interventions to reduce cognitive impairments following critical illness: a topical systematic review. Acta Anaesthesiol Scand. 2017;61(2):135–48.

    CAS  PubMed  Google Scholar 

  13. Boyce LW, Reinders CC, Volker G, Los E, van Exel HJ, Vliet Vlieland TPM, et al. Out-of-hospital cardiac arrest survivors with cognitive impairments have lower exercise capacity. Resuscitation [Internet]. 2017;115: 90–5. https://doi.org/10.1016/j.resuscitation.2017.04.010.

    Article  Google Scholar 

  14. Eggermont LHP, De Boer K, Muller M, Jaschke AC, Kamp O, Scherder EJA. Cardiac disease and cognitive impairment: a systematic review. Heart. 2012;98(18): 1334–40.

    PubMed  Google Scholar 

  15. Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013(Mci):861893.

    PubMed  PubMed Central  Google Scholar 

  16. Wilder Schaaf KP, Artman LK, Peberdy MA, Walker WC, Ornato JP, Gossip MR, et al. Anxiety, depression, and PTSD following cardiac arrest: a systematic review of the literature. Resuscitation [Internet]. 2013;84(7):873–7. https://doi.org/10.1016/j.resuscitation.2012.11.021.

    Article  Google Scholar 

  17. Lilja G, Nilsson G, Nielsen N, Friberg H, Hassager C, Koopmans M, et al. Anxiety and depression among out-of-hospital cardiac arrest survivors. Resuscitation [Internet]. 2015;97:68–75. https://doi.org/10.1016/j.resuscitation.2015.09.389.

    Article  CAS  Google Scholar 

  18. Verberne D, Moulaert V, Verbunt J, van Heugten C. Factors predicting quality of life and societal participation after survival of a cardiac arrest: a prognostic longitudinal cohort study. Resuscitation [Internet]. 2018;123:51–7. https://doi.org/10.1016/j.resuscitation.2017.11.069.

    Article  Google Scholar 

  19. Davies SE, Rhys M, Voss S, Greenwood R, Thomas M, Benger JR. Psychological wellbeing in survivors of cardiac arrest, and its relationship to neurocognitive function. Resuscitation [Internet]. 2017;111:22–5. https://doi.org/10.1016/j.resuscitation.2016.11.004.

    Article  Google Scholar 

  20. Wachelder EM, Moulaert VRMP, van Heugten C, Verbunt JA, Bekkers SCAM, Wade DT. Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation. 2009;80(5):517–22.

    CAS  PubMed  Google Scholar 

  21. Roman DD, Holker EG, Missov E, Colvin MM, Menk J. Neuropsychological functioning in heart transplant candidates. Clin Neuropsychol [Internet]. 2017;31(1):118–37. https://doi.org/10.1080/13854046.2016.1212096.

    Article  Google Scholar 

  22. Hjelm C, Dahl A, Broström A, Mårtensson J, Johansson B, Strömberg A. The influence of heart failure on longitudinal changes in cognition among individuals 80years of age and older. J Clin Nurs. 2012;21(7–8):994–1003.

    PubMed  Google Scholar 

  23. Bürker BS, Gullestad L, Gude E, Relbo Authen A, Grov I, Hol PK, et al. Cognitive function after heart transplantation: comparing everolimus-based and calcineurin inhibitor-based regimens. Clin Transplant. 2017;31(4)

    Google Scholar 

  24. Samelson-Jones E, Mancini DM, Shapiro PA. Cardiac transplantation in adult patients with mental retardation: do outcomes support consensus guidelines? Psychosomatics [Internet]. 2012;53(2):133–8. https://doi.org/10.1016/j.psym.2011.12.011.

    Article  Google Scholar 

  25. Bornstein RA, Starling RC, Myerowitz PD, Haas GJ. Neuropsychological function in patients with end-stage heart failure before and after cardiac transplantation. Acta Neurol Scand. 1995;91(4):260–5.

    CAS  PubMed  Google Scholar 

  26. Cupples SA, Stilley CS. Cognitive function in adult cardiothoracic transplant candidates and recipients. J Cardiovasc Nurs. 2005;20(5 Suppl):S74.

    PubMed  Google Scholar 

  27. Lang UE, Heger J, Willbring M, Domula M, Matschke K, Tugtekin SM. Immunosuppression using the mammalian target of rapamycin (mTOR) inhibitor Everolimus: pilot Study shows significant cognitive and affective improvement. Transplant Proc [Internet]. 2009;41(10):4285–8. https://doi.org/10.1016/j.transproceed.2009.08.050.

    Article  CAS  Google Scholar 

  28. Politi P, Piccinelli M, Poli PF, Klersy C, Campana C, Goggi C, et al. Ten years of “extended” life: quality of life among heart transplantation survivors. Transplantation. 2004;78(2):257–63.

    PubMed  Google Scholar 

  29. Grady KL, Naftel DC, Kobashigawa J, Chait J, Young JB, Pelegrin D, et al. Patterns and predictors of quality of life at 5 to 10 years after heart transplantation. J Hear Lung Transplant. 2007;26(5):535–43.

    Google Scholar 

  30. Okwuosa I, Pumphrey D, Puthumana J, Brown RM, Cotts W. Impact of identification and treatment of depression in heart transplant patients. Cardiovasc Psychiatry Neurol. 2014;2014:1.

    Google Scholar 

  31. Havik OE, Sivertsen B, Relbo A, Hellesvik M, Grov I, Geiran O, et al. Depressive symptoms and all-cause mortality after heart transplantation. Transplantation. 2007;84(1):97–103.

    PubMed  Google Scholar 

  32. Sappok T, Diefenbacher A, Budczies J, Schade C, Grubich C, Bergmann T, et al. Diagnosing autism in a clinical sample of adults with intellectual disabilities: how useful are the ADOS and the ADI-R? Res Dev Disabil [Internet]. 2013 [cited 2015 Jul 18];34(5): 1642–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23475013

  33. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 Years – Autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018;67(6)

    Google Scholar 

  34. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med [Internet]. 2014 [cited 2015 Jun 20];45(03):1–13. Available from: http://journals.cambridge.org/abstract_S003329171400172X

  35. Fombonne E. The epidemiology of autism: a review. Psychol Med [Internet]. 1999 [cited 2015 Jul 7];29(4):769–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10473304.

  36. Mathersul D, McDonald S, Rushby JA. Understanding advanced theory of mind and empathy in high-functioning adults with autism spectrum disorder. J Clin Exp Neuropsychol. 2013;35(6):655–68.

    PubMed  Google Scholar 

  37. Aljunied M, Frederickson N. Does central coherence relate to the cognitive performance of children with autism in dynamic assessments? Autism. 2013;17(2):172–83.

    PubMed  Google Scholar 

  38. Vermeulen P. Context blindness in autism Spectrum disorder: not using the Forest to see the trees as trees. Focus Autism Other Dev Disabl. 2015;30(3):182–92.

    Google Scholar 

  39. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    PubMed  Google Scholar 

  40. Demetriou EA, Lampit A, Quintana DS, Naismith SL, Song YJC, Pye JE, et al. Autism spectrum disorders: a meta-analysis of executive function. Mol Psychiatry [Internet]. 2018;23(5):1198–204. https://doi.org/10.1038/mp.2017.75.

    Article  CAS  Google Scholar 

  41. Wallace GL, Kenworthy L, Pugliese CE, Popal HS, White EI, Brodsky E, et al. Real-world executive functions in adults with autism Spectrum disorder: profiles of impairment and associations with adaptive functioning and co-morbid anxiety and depression. J Autism Dev Disord. 2016;46(3):1071–83.

    PubMed  PubMed Central  Google Scholar 

  42. Geurts HM, van den Bergh SFWM, Ruzzano L. Prepotent response inhibition and interference control in autism spectrum disorders: two meta-analyses. Autism Res. 2014;7(4):407–20.

    PubMed  Google Scholar 

  43. Leung RC, Zakzanis KK. Brief report: cognitive flexibility in autism spectrum disorders: a quantitative review. J Autism Dev Disord. 2014;44(10):2628–45.

    PubMed  Google Scholar 

  44. Wang Y, Zhang Y, Liu L, Cui J, Wang J, DHK S, et al. A meta-analysis of working memory impairments in autism Spectrum disorders. Neuropsychol Rev. 2017;27(1):46–61.

    PubMed  Google Scholar 

  45. Benevides TW, Lane SJ. A review of cardiac autonomic measures: considerations for examination of physiological response in children with autism Spectrum disorder. J Autism Dev Disord. 2013;45(2): 560–75.

    Google Scholar 

  46. Porges SW. The polyvagal theory: phylogenetic substrates of a social nervous system. Int J Psychophysiol. 2001;42(2):123–46.

    CAS  PubMed  Google Scholar 

  47. Porges SW. The vagus: a mediator of behavioral and physiologic features associated with autism. In: The neurobiology of autism 2. 2005. p. 65–77.

    Google Scholar 

  48. Mazefsky CA, White SW. Emotion regulation. Concepts & Practice in autism Spectrum disorder. Child Adolesc Psychiatr Clin N Am. 2014;23(1):15–24.

    PubMed  Google Scholar 

  49. Panju S, Brian J, Dupuis A, Anagnostou E, Kushki A. Atypical sympathetic arousal in children with autism spectrum disorder and its association with anxiety symptomatology. Mol Autism [Internet]. 2015;6(1): 1–10. https://doi.org/10.1186/s13229-015-0057-5.

    Article  CAS  Google Scholar 

  50. Pace M, Bricout VA. Low heart rate response of children with autism spectrum disorders in comparison to controls during physical exercise. Physiol Behav [Internet]. 2015;141:63–8. https://doi.org/10.1016/j.physbeh.2015.01.011.

    Article  CAS  Google Scholar 

  51. Kushki A, Brian J, Dupuis A, Anagnostou E. Functional autonomic nervous system profile in children with autism spectrum disorder. Mol Autism. 2014;5(1):1–10.

    Google Scholar 

  52. Harder R, Malow BA, Goodpaster RL, Iqbal F, Halbower A, Goldman SE, et al. Heart rate variability during sleep in children with autism spectrum disorder. Clin Auton Res [Internet]. 2016;26(6):423–32. Available from: https://pubmed.ncbi.nlm.nih.gov/27491489

    Google Scholar 

  53. Ellenbroek BA, Sengul HK. Autism spectrum disorders: autonomic alterations with a special focus on the heart. Hear Mind. 2017;1(2):78.

    Google Scholar 

  54. Neuhaus E, Bernier RA, Beauchaine TP. Children with autism show altered autonomic adaptation to novel and familiar social partners. Autism Res. 2016;9(5):579–91.

    PubMed  Google Scholar 

  55. Condy EE, Scarpa A, Friedman BH. Respiratory sinus arrhythmia predicts restricted repetitive behavior severity. J Autism Dev Disord. 2017;47(9):2795–804.

    PubMed  Google Scholar 

  56. Patriquin MA, Scarpa A, Friedman BH, Porges SW. Respiratory sinus arrhythmia: a marker for positive social functioning and receptive language skills in children with autism spectrum disorders. Dev Psychobiol. 2013;55(2):101–12.

    PubMed  Google Scholar 

  57. Newlin DB, Levenson RW. Pre-ejection period: measuring Beta-adrenergic influences upon the heart. Psychophysiology. 1979;16(6):546–52.

    CAS  PubMed  Google Scholar 

  58. Edmiston EK, Muscatello RA, Corbett BA. Threat in Adolescents with autism spectrum disorder. 2018;57–65.

    Google Scholar 

  59. Schaaf RC, Benevides TW, Leiby BE, Sendecki JA. Autonomic dysregulation during sensory stimulation in children with autism spectrum disorder. J Autism Dev Disord. 2013;45(2):461–72.

    Google Scholar 

  60. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub; 2013.

    Google Scholar 

  61. Salvador-Carulla L, Bertelli M. ‘Mental retardation’ or ‘intellectual disability’: time for a conceptual change. Psychopathology [Internet]. 2008;41(1): 10–6. https://doi.org/10.1159/000109950.

    Article  Google Scholar 

  62. McKenzie K, Milton M, Smith G, Ouellette-Kuntz H. Systematic review of the prevalence and incidence of intellectual disabilities: current trends and issues. Curr Dev Disord Reports [Internet]. 2016;3(2):104–15. https://doi.org/10.1007/s40474-016-0085-7.

    Article  Google Scholar 

  63. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 2011;32(2):419–36.

    PubMed  Google Scholar 

  64. Dieckmann F, Giovis C, Offergeld J. The life expectancy of people with intellectual disabilities in Germany. J Appl Res Intellect Disabil. 2015;28(5): 373–82.

    PubMed  Google Scholar 

  65. Coppus AMW. People with intellectual disability: what do we know about adulthood and life expectancy? Dev Disabil Res Rev. 2013;18(1):6–16.

    CAS  PubMed  Google Scholar 

  66. Emerson E. Health status and health risks of the “hidden majority” of adults with intellectual disability. Intellect Dev Disabil. 2011;49(3):155–65.

    PubMed  Google Scholar 

  67. Rimmer JH, Yamaki K, Lowry BMD, Wang E, Vogel LC. Obesity and obesity-related secondary conditions in adolescents with intellectual/developmental disabilities. J Intellect Disabil Res. 2010;54(9):787–94.

    CAS  PubMed  Google Scholar 

  68. Huang CJ, Wang SY, Lee MH, Chiu HC. Prevalence and incidence of mental illness in diabetes: a national population-based cohort study. Diabetes Res Clin Pract [Internet]. 2011;93(1):106–14. https://doi.org/10.1016/j.diabres.2011.03.032.

    Article  Google Scholar 

  69. de Kuijper G, Hoekstra P, Visser F, Scholte FA, Penning C, Evenhuis H. Use of antipsychotic drugs in individuals with intellectual disability (ID) in the Netherlands: prevalence and reasons for prescription. J Intellect Disabil Res. 2010;54(7):659–67.

    PubMed  Google Scholar 

  70. Deb S, Kwok H, Bertelli M, Salvador-Carulla L, Bradley E, Torr J, et al. International guide to prescribing psychotropic medication for the management of problem behaviours in adults with intellectual disabilities. World Psychiatry. 2009;8(3):181–6.

    PubMed  PubMed Central  Google Scholar 

  71. Trollor JN, Salomon C, Franklin C. Prescribing psychotropic drugs to adults with an intellectual disability. Aust Prescr. 2016;39(4):126–30.

    PubMed  PubMed Central  Google Scholar 

  72. McKee JR, Bodfish JW, Mahorney SL, Heeth WL, Ball MP. Metabolic effects associated with atypical antipsychotic treatment in the developmentally disabled. J Clin Psychiatry. 2005;66(9):1161–8.

    CAS  PubMed  Google Scholar 

  73. Schoufour JD, Oppewal A, Van Der Maarl HJK, Hermans H, Evenhuis HM, Hilgenkamp TIM, et al. Multimorbidity and polypharmacy are independently associated with mortality in older people with intellectual disabilities: a 5-year follow-up from the HA-ID study. Am J Intellect Dev Disabil. 2018;123(1):72–82.

    PubMed  Google Scholar 

  74. Sarı HY, Yılmaz M, Serin E, Kısa SS, Yesiltepe Ö, Tokem Y, et al. Obesidade e hipertensão em adolescentes e adultos com deficiência intelectual. Acta Paul Enferm. 2016;29(2):169–77.

    Google Scholar 

  75. Draheim CC. Cardiovascular disease prevalence and risk factors of persons with mental retardation. Ment Retard Dev Disabil Res Rev. 2006;12(1):3–12.

    PubMed  Google Scholar 

  76. Huxley A, Dalton M, Tsui YYY, Hayhurst KP. Prevalence of alcohol, smoking, and illicit drug use amongst people with intellectual disabilities: review. Drugs Educ Prev Policy [Internet]. 2019;26(5):365–84. https://doi.org/10.1080/09687637.2018.1488949.

    Article  Google Scholar 

  77. Hiscock R, Bauld L, Amos A, Fidler JA, Munafò M. Socioeconomic status and smoking: a review. Ann N Y Acad Sci. 2012;1248(1):107–23.

    PubMed  Google Scholar 

  78. Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry. 2017;16(2): 163–80.

    PubMed  PubMed Central  Google Scholar 

  79. Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications a systematic review and meta-analysis. JAMA Psychiat. 2015;72(4):334–41.

    Google Scholar 

  80. Hanlon P, MacDonald S, Wood K, Allan L, Cooper S-A. Long-term condition management in adults with intellectual disability in primary care: a systematic review. BJGP Open. 2018;2(1):bjgpopen18X101445.

    PubMed  PubMed Central  Google Scholar 

  81. Hithersay R, Strydom A, Moulster G, Buszewicz M. Carer-led health interventions to monitor, promote and improve the health of adults with intellectual disabilities in the community: a systematic review. Res Dev Disabil. 2014;35(4):887–907.

    PubMed  Google Scholar 

  82. Willems M, Waninge A, Hilgenkamp TIM, van Empelen P, Krijnen WP, van der Schans CP, et al. Effects of lifestyle change interventions for people with intellectual disabilities: systematic review and meta-analysis of randomized controlled trials. J Appl Res Intellect Disabil. 2018;31(6):949–61.

    PubMed  Google Scholar 

  83. Tay L, Lim WS, Chan M, Ali N, Mahanum S, Chew P, et al. New DSM-V neurocognitive disorders criteria and their impact on diagnostic classifications of mild cognitive impairment and dementia in a memory clinic setting. Am J Geriatr Psychiatry [Internet]. 2015;23(8):768–79. https://doi.org/10.1016/j.jagp.2015.01.004.

    Article  Google Scholar 

  84. Howes MJR, Perry E. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging. 2011;28(6):439–68.

    CAS  PubMed  Google Scholar 

  85. Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, et al. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics. 2018;50(1):1–9.

    CAS  PubMed  Google Scholar 

  86. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem [Internet]. 2013;70:165–88. https://doi.org/10.1016/j.ejmech.2013.09.050.

    Article  CAS  Google Scholar 

  87. Galimberti D, Scarpini E. Disease-modifying treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2011;4(4):203–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang R, Reddy H. Role of glutamate and NMDA in Alzheimer’s desease. J Alzheimer’s Desese. 2017;57(4):1041–8.

    CAS  Google Scholar 

  89. Fosbøl EL, Peterson ED, Holm E, Gislason GH, Zhang Y, Curtis LH, et al. Comparative cardiovascular safety of dementia medications: a cross-national study. J Am Geriatr Soc. 2012;60(12):2283–9.

    PubMed  Google Scholar 

  90. Park-Wyllie LY, Mamdani MM, Li P, Gill SS, Laupacis A, Juurlink DN. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study. PLOS Med [Internet]. 2009;6(9):e1000157. https://doi.org/10.1371/journal.pmed.1000157.

    Article  CAS  Google Scholar 

  91. Gill SS, Anderson GM, Fischer HD, Bell CM, Li P, Normand SLT, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867–73.

    PubMed  Google Scholar 

  92. Malik BH, Hamid P, Khan S, Gupta D, Islam M. Correlation between donepezil and QTc prolongation and torsades de Pointes: a very rare phenomenon. Cureus. 2019;11(12)

    Google Scholar 

  93. Isik AT, Soysal P, Stubbs B, Solmi M, Basso C, Maggi S, et al. Cardiovascular outcomes of cholinesterase Inhibitors in individuals with dementia: a meta-analysis and systematic review. J Am Geriatr Soc. 2018;66(9):1805–11.

    PubMed  Google Scholar 

  94. Nordström P, Religa D, Wimo A, Winblad B, Eriksdotter M. The use of cholinesterase inhibitors and the risk of myocardial infarction and death: a nationwide cohort study in subjects with Alzheimer’s disease. Eur Heart J. 2013;34(33):2585–91.

    PubMed  Google Scholar 

  95. Gallini A, Sommet A, Montastruc J. Does memantine induce bradycardia? A study in the French PharmacoVigilance database. Pharmacoepidemiol Drug Saf. 2008;17(9):877–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Vercesi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vercesi, M. (2020). Heart Activity and Cognition. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-28008-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28008-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28007-9

  • Online ISBN: 978-3-030-28008-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics