Skip to main content

Applications of Aerogels in Space Exploration

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1483 Accesses

Abstract

NASA has used aerogel in several space exploration missions over the last two decades. Aerogel has been used as a hypervelocity particle capture medium (Stardust) and as thermal insulation for the Mars Pathfinder, Mars Exploration Rovers, and Mars Science Laboratory. Future applications of aerogel are also discussed and include the proposed use of aerogel as a sample collection medium to return upper atmosphere particles from Mars to Earth and as thermal insulation in thermal-to-electric generators for future space missions and terrestrial waste-heat recovery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pierre, A.C., Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4265 (2002)

    Article  CAS  Google Scholar 

  2. Livage, J., Sanchez, C.: Sol-gel chemistry. J. Non-Cryst. Solids. 145, 11–19 (1992)

    Article  CAS  Google Scholar 

  3. Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90(1), 33–72 (1990)

    Article  CAS  Google Scholar 

  4. Brinker, C.J., Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic, San Diego (1990)

    Google Scholar 

  5. Akimov, Y.K.: Fields of applications of aerogels. Instrum. Exp. Techn. 46(3), 287–299 (2003)

    Article  CAS  Google Scholar 

  6. Herrmann, G., Iden, R., Mielke, M., Teich, F., Ziegler, B.: On the way to commercial production of silica aerogel. J. Non-Cryst. Solids. 186, 380–387 (1995)

    Article  CAS  Google Scholar 

  7. Hrubesh, L.W.: Aerogel applications. J. Non-Cryst. Solids. 225, 335–342 (1998)

    Article  CAS  Google Scholar 

  8. Schmidt, M., Schwertfeger, F.: Applications for silica aerogel products. J. Non-Cryst. Solids. 225, 364–368 (1998)

    Article  CAS  Google Scholar 

  9. Ulrich, D.R.: Prospects for sol-gel processes. J. Non-Cryst. Solids. 121, 465–479 (1990)

    Article  CAS  Google Scholar 

  10. Fricke, J., Tillotson, T.: Aerogels: production, characterization, and applications. Thin Solid Films. 297, 212–223 (1997)

    Article  CAS  Google Scholar 

  11. MacKenzie, J.D.: Applications of the sol-gel process. J. Non-Cryst. Solids. 100, 162–168 (1988)

    Article  CAS  Google Scholar 

  12. Adachi, I., Sumiyoshi, T., Hayashi, K., Iida, N., Enomoto, R., Tsukada, K., Suda, R., Matsumoto, S., Natori, K., Yokoyama, M., Yokogawa, H.: Study of a threshold Cherenkov counter based on silica aerogels with low refractive index. Nucl. Instrum. Methods Phys. Res. A. 335, 390–398 (1995)

    Article  Google Scholar 

  13. Asner, D., Butler, F., Dominick, J., Fadeyev, V., Masek, G., Nemati, B., Skubic, P., Strynowski, R.: Experimental study of aerogel Cherenkov detectors for particle identification. Nucl. Instrum. Methods Phys. Res. A. 374, 286–292 (1996)

    Article  CAS  Google Scholar 

  14. Sumiyoshi, T., Adachi, I., Enomotoi, R., Iijima, T., Suda, R., Yoko yama, M., Yokogawa, H.: Silica aerogels in high energy physics. J. Non-Cryst. Solids. 225, 369–374 (1998)

    Article  CAS  Google Scholar 

  15. Ishino, M., Chiba, J., En’yo, H., Funahashi, H., Ichikawa, A., Ieiri, M., Kanda, H., Masaike, A., Mihara, S., Miyashita, T., Murakami, T., Nakamura, A., Naruki, M., Muto, M., Ozawa, K., Sato, H.D., Sekimoto, M., Tabaru, T., Tanaka, K.H., Yoshimura, Y., Yokkaichi, S., Yoko yama, M., Yokgawa, H.: Mass production of hydrophobic silica aerogel and readout optics of Cherenkov light. Nucl. Instrum. Methods Phys. Res. A. 457, 581–587 (2001)

    Article  CAS  Google Scholar 

  16. DeLeo, R., Lagamba, L., Manzari, V., Nappi, E., Scognetti, T., Alemi, M., Becker, H., Forty, R., Adachi, I., Suda, R., Sumiyoshi, T., Leone, A., Perrino, R., Matteuzzi, C., Seguinot, J., Ypsilantis, T., Cisbani, E., Frullani, S., Garibaldi, F., Iodice, M., Uriuoli, G.M.: Electronic detection of focused Cherenkov rings from aerogel. Nucl. Instrum. Methods Phys. Res. A. 401, 187–205 (1997)

    Article  CAS  Google Scholar 

  17. Tsou, P.: Silica aerogel captures cosmic dust intact. J. Non-Cryst. Solids. 186, 415–427 (1995)

    Article  CAS  Google Scholar 

  18. Tsou, P., Brownlee, D.E., Sandford, S.A., Horz, F., Zolensky, M.E.: Wild 2 and interstellar sample collection and earth return. J. Geophys. Res. 108(E10), 1–21 (2003)

    Google Scholar 

  19. Horz, F., Zolensky, M.E., Bernhard, R.P., See, T.H., Warren, J.L.: Impact features and projectile residues in aerogel ex-posed on Mir. Icarus. 147(2), 559–579 (2000)

    Article  CAS  Google Scholar 

  20. Brownlee, D.E., Tsou, P., Atkins, K.L., Yen, C.-W., Vellinga, J.M., Price, S., Clark, B.C.: Stardust: finessing expensive cometary sample returns. Acta Astronaut. 39(1–4), 51–60 (1996)

    Article  CAS  Google Scholar 

  21. Horz, F., Bastien, R., Borg, J., Bradley, J., Bridges, J.C., Brownlee, D.E., Burchell, M.J., Chi, M., Cintala, M., Dai, Z.R., Djouadi, Z., Dominguez, G., Economou, T.E., Fairey, S.A.J., Floss, C., Franchi, I.A., Graham, G.A., Green, S.F., Heck, P., Hoppe, P., Huth, J., Ishii, H., Kearsly, A.T., Kissel, J., Leitner, J., Leroux, H., Marhas, K., Messenger, K., Schwandt, C.S., See, T.H., Snead, C., Stadermann, F.J., Stephan, T., Stroud, R., Teslich, N., Trigo-Rodriguez, J.M., Tuzzolino, A.J., Troadec, D., Tsou, P., Warren, J., Westphal, A., Wozniakiewicz, P., Wright, I., Zinner, E.: Impact features on stardust: implications for comet 81P/wild 2 dust. Science. 314, 1716–1719 (2006)

    Article  Google Scholar 

  22. Tillotson, T.M., Hrubesh, L.W.: Transparent ultra low-density silica aerogels prepared by a two-step sol-gel process. J. Non-Cryst. Solids. 145, 44–50 (1992)

    Article  CAS  Google Scholar 

  23. Jones, S.M.: A method for producing gradient density aerogel. J. Sol-Gel Sci. Technol. 44, 255–258 (2007)

    Article  CAS  Google Scholar 

  24. Sandford, S.A., Aleon, J., Alexander, C.M.O., Araki, T., Bajit, S., Baratta, G.A., Borg, J., Bradley, J.P., Brownlee, D.E., Brucato, J.R., Burchell, M.J., Busemann, H., Butterworth, A., Clemett, S.J., Cody, G., Colangeli, L., Copper, G., D’Hendecourt, L., Djouadi, Z., Dworkin, J.P., Ferrini, G., Fleckenstein, H., Flynn, G.J., Franchi, I.A., Fries, M., Gilles, M.K., Glavin, D.P., Gounelle, M., Grossemy, F., Jacobsen, C., Keller, L.P., Kilcoyne, A.L.D., Leitner, J., Matrajt, G., Meibom, A., Mennella, V., Mostefaoui, S., Nittler, L.R., Palumbo, M.E., Papanastassiou, D.A., Robert, F., Rotundi, A., Snead, C.J., Spencer, M.K., Stadermann, F.J., Steele, A., Stephan, T., Tsou, P., Tyliszczak, T., Westphal, A.J., Wirick, S., Wopenka, B., Yabuya, H., Zare, R.N., Zolensky, M.E.: Organics captured from comet 81P/wild 2 by the stardust spacecraft. Science. 314, 1720–1724 (2006)

    Article  CAS  Google Scholar 

  25. Zolensky, M.E., Zega, J., Yano, H., Westphal, A.J., Weisberg, M.K., Weber, I., Warren, J.L., Velbel, M.A., Tsuchiyama, A., Tsou, P., Toppani, A., Tomioka, N., Tomeoka, K., Teslich, N., Taheri, M., Susini, J., Stroud, R., Stephan, T., Stadermann, F.J., Snead, C.J., Simon, S.B., Simionovici, A., See, T.H., Robert, F., Rietmeijer, F.J.M., Rao, W., Perronnet, M.C., Papanastattiou, D.A., Okudairi, K., Ohsumi, K., Ohnishi, I., Nalamura-Messenger, K., Nakamura, T., Mostefaoui, S., Mikouchi, T., Meibom, A., Matrajt, G., Marcus, M.A., Leroux, H., Lemelle, L., Le, L., Lanzirotti, A., Langenhorst, F., Krot, A.N., Keller, L., Kearsley, A.T., Joswiak, D., Jacob, D., Ishii, H., Harvey, R., Hagiya, K., Grossman, J.N., Graham, G.A., Gounelle, M., Gillet, P., Genge, M.J., Flynn, G., Ferroir, T., Fallon, S., Ebel, D.S., Dai, Z.R., Cordier, P., Clark, B., Chi, M., Butterworth, A.L., Brownlee, D.E., Bridges, J.C., Brennan, S., Brearley, A., Bradley, J.P., Bleuet, P., Bland, P.A., Bastien, R.: Mineralogy and petrology of comet 81P/wild 2 nucleus samples. Science. 314, 1735–1739 (2006)

    Article  CAS  Google Scholar 

  26. Brownlee, D., Tsou, P., Aleon, J., Alexander, C.M.O.’.D., Araki, T., Bajt, S., Baratta, G.A., Bastien, R., Bland, P., Bleuet, P., Borg, J., Bradley, J.P., Brearley, A., Brenker, F., Brennan, S., Bridges, J.C., Browning, N., Brucato, J.R., Brucato, H., Bullock, E., Burchell, M.J., Busemann, H., Butterworth, A., Chaussidon, M., Cheuvront, A., Chi, M., Cintala, M.J., Clark, B.C., Clemett, S.J., Cody, G., Colangeli, L., Cooper, G., Cordier, P.G., Daghlian, C., Dai, Z., D’Hendecourt, L., Djouadi, Z., Dominguez, G., Duxbury, T., Dworkin, J.P., Ebel, D., Economou, T.E., Fairey, S.A.J., Fallon, S., Ferrini, G., Ferroir, T., Fleckenstein, H., Floss, C., Flynn, G., Franchi, I.A., Fries, M., Gainsforth, Z., Gallien, J.-P., Genge, M., Gilles, M.K., Gillet, P., Gilmour, J., Glavin, D.P., Gounelle, M., Grady, M.M., Graham, G.A., Grant, P.G., Green, S.F., Grossemy, F., Grossman, L., Grossman, J., Guan, Y., Hagiya, K., Harvey, R., Heck, P., Herzog, G.F., Hoppe, P., Hörz, F., Huth, J., Hutcheon, I.D., Ishii, H., Ito, M., Jacob, D., Jacobsen, C., Jacobsen, S., Jones, S.M., Joswiak, D., Kearsley, A.T., Keller, L., Khodja, H., Kilcoyne, A.L.D., Kissel, J., Krot, A., Langenhorst, F., Lanzirotti, A., Le, L., Leshin, L., Leitner, J., Lemelle, L., Leroux, H., Liu, M.-C., Luening, K., Lyon, I., MacPherson, G., Marcus, M.A., Marhas, K., Matrajt, G., Meibom, A., Mennella, V., Messenger, K., Mikouchi, T., Mostefaoui, S., Nakamura, T., Nakano, T., Newville, M., Nittler, L.R., Ohnishi, I., Ohsumi, K., Okudaira, K., Papanastassiou, D.A., Palma, R., Palumbo, M.O., Pepin, R.E., Perkins, D., Perronnet, M., Pianetta, P., Rao, W., Rietmeijer, F., Robert, F., Rost, D., Rotundi, A., Ryan, R., Sandford, S.A., Schwandt, C.S., See, T.H., Schlutter, D., Sheffield-Parker, J.A., Simionovici, S., Sitnitsky, S.I., Snead, C.J., Spencer, M.K., Stadermann, F.J., Steele, A., Stephan, T., Stroud, R., Susini, J., Sutton, S.R., Taheri, M., Taylor, S., Teslich, N., Tomeoka, K., Tomioka, N., Toppani, A., Trigo-Rodrıguez, J.M., Troadec, Tsuchiyama, A., Tuzzolino, A.J., Tyliszczak, T., Uesugi, K., Velbel, M., Vellenga, J., Vicenzi, E., Vincze, L., Warren, J., Weber, Weisberg, M., Westphal, A.J., Wirick, S., Wooden, Wopenka, B., Wozniakiewicz, P.A., Wright, I., Yabuta, Yano, H., Young, E.D., Zare, R.N., Zega, T., Ziegler, Zimmerman, L., Zinner, E., Zolensky, M.: Comet 81P/wild 2 under a micro-scope. Science. 314, 1711–1716 (2006)

    Article  CAS  Google Scholar 

  27. Westphal, A.J., Butterworth, A.L., Snead, C.J., Craig, N., Anderson, D., Jones, S.M., Brownlee, D.E., Farnsworth, R., Zolensky, M.E.: Stardust at home: a massively distributed public search for interstellar dust in the Stardust interstellar dust collector. In: Lunar Planetary Sci. Con. XXXVI, Lunar Planetary Institute, Houston, TX Abstract 1908 (2005)

    Google Scholar 

  28. Leshin, L.A., Yen, A., Bomba, J., Clarke, B., Epp, C., Fourney, L., Gamber, T., Grave, C., Hupp, J., Jones, S., Jurewicz, A.J.G., Oakman, K., Rea, J., Richardson, M., Romeo, K., Sharp, T., Sutter, B., Thiemens, M., Thornton, J., Vicker, D., Willcockson, W., Zolensky, M.: Sample collection for investigation of Mars (SCIM): an early Mars sample return mission through the Mars Scout Program. In: Lunar Planetary Sci. Conf. XXXIII, Lunar Planetary Institute, Houston, TX Abstract 1721 (2002)

    Google Scholar 

  29. Leshin, L.A., Clark, B.C., Forney, L., Jones, S.M., Jurewicz, A.J.G., Greeley, R., McSween, H.Y., Richardson, M., Sharp, T., Thiemens, M., Wadhwa, M., Wiens, R.C., Yen, A., Zolensky, M.: Scientific benefit of a Mars dust sample capture and Earth return with SCIM Lunar Planetary Sci. Conf., XXXIV, Lunar Plane-tary Institute, Houston, TX Abstract 1288 (2003)

    Google Scholar 

  30. Jurewicz, A.J.G., Forney, L., Bomba, J., Vicker, D., Jones, S., Yen, A., Clark, B., Gamber, T., Leshin, L.A., Richardson, R., Sharpe, T., Thiemens, M., Thornton, J.M., Zolensky, M.: Investigating the use of aerogel collectors for the SCIM martian dust sample return. In: Lunar Planetary Sci. Conf. XXXIII, Lunar Planetary Institute, Houston, TX, 2002 Abstract 1703 (2002)

    Google Scholar 

  31. Jones, S.M.: Non-silica aerogel as a hypervelocity capture material (Accepted by Meteor Planet Sci)

    Google Scholar 

  32. Westphal, A.J., et al.: Aerogel keystones: extraction of complete hypervelocity impact events from aerogel collectors. Meteor. Planet Sci. 39(8), 1375–1386 (2004)

    Article  CAS  Google Scholar 

  33. Dominguez, G., Westphal, A., Phillips, M., Jones, S.: A fluorescent aerogel for capture and identification of inter-planetary and interstellar dust. Astrophys. J. 592, 631–635 (2003)

    Article  CAS  Google Scholar 

  34. Dominquez, G., Westphal, A.J., Jones, S.M., Phillips, M.L.F.: Fluorescent impact cavities in a titanium-doped Al2O3-SiO2 aerogel: implications for the velocity resolution of calorimetric aerogels. J. Non-Cryst. Solids. 350, 385–390 (2004)

    Article  Google Scholar 

  35. Jones, S.M., Heinz, N., Westphal, A.: Effects of hypervelocity capture in aerogel on the compositions of common silicate materials. In: 49th Lunar Planetary Science Conference, Woodlands, TX, Abstract #1504 (2018)

    Google Scholar 

  36. Novak, K.S., Phillips, C.J., Burir, G.C., Sunada, E.T., Pauken, M.T.: Development of a thermal control architecture for the Mars Exploration Rovers. In: Space Technology Applications International Forum 2003 Feb 2–6 (2003)

    Google Scholar 

  37. Hecht, M.H., Hoffman, J.A.: The Mars Oxygen ISRU Experiment (MOXIE) on the Mars 2020 Rover. In: 3rd International Workshop on Instrumentation for Planetary Missions, Pasadena, CA Abstract #4130 (2016)

    Google Scholar 

  38. Hecht, M.H., Hoffman, J.A.: The Mars Oxygen ISRU Experiment (MOXIE) on the Mars 2020 Rover. In: 46th Lunar Planetary Science Conference, Houston, TX Abstract # 2774 (2015)

    Google Scholar 

  39. Tritt, M., Subramanian, M.A.: Thermoelectric materials, phenomena, and applications. MRS Bull. 36, 188–229 (2006)

    Article  Google Scholar 

  40. Rowe, D.M. (ed.): CRC Handbook on Thermoelectrics. CRC Press, Boca Raton (1995)

    Google Scholar 

  41. Stabler, F.: Automotive Applications of High Efficiency Thermolectrics. DARPA/ONR Program Review and DOE High Efficiency Thermoelectric Workshop San Diego, CA, March 24–27 (2002)

    Google Scholar 

  42. Kuhn, J., Gleissner, T., Arduini-Schuster, M.C., Korder, S., Fricke, J.: Integration of mineral powders into SiO2 aerogels. J. Non-Cryst. Solids. 186, 291–295 (1995)

    Article  CAS  Google Scholar 

  43. Sakamoto, J., Caillat, T., Fleurial, J.P., Jones, S., Paik, J., Dong, W.: Improving thermoelectric device performance and durability through the integration of advanced aerogel-based ceramics. Ceram. Trans. 196, 275–290 (2006)

    Article  CAS  Google Scholar 

  44. Paik, J.-A., Jones, S.M., Sakamoto, J.: Composite Aerogels for high temperature thermal insulation (In preparation)

    Google Scholar 

  45. Petkov, M.P., Jones, S.M., Voecks, G.E.: Zeolite-loaded aerogel getters as a primary vacuum sorption pump in planetary instruments (in preparation) (2018)

    Google Scholar 

  46. Tsapin, A., Jones, S.M., Petkov, M., Bouchard, D.: Aerogel Volatiles Concentrator and Analyzer (AVCA) – collection and concentration of trace volatile organics in aerogel for spectroscopic detection. Icarus. 248, 150–156 (2017)

    Article  Google Scholar 

  47. Worden, P., Torii, R., Mester, J.C., Everitt, C.W.F.: The STEP payload and experiment. Adv. Space Res. 25(6), 1205–1208 (2000)

    Article  Google Scholar 

  48. Mester, J., Torii, R., Worden, P., Lockerbie, N., Vitale, S., Everitt, C.W.F.: The STEP mission: principles and baseline design. Class Quantum Grav. 18(13), 2475–2486 (2001)

    Article  Google Scholar 

  49. Wang, S., Torii, R., Vitale, S.: Silica aerogel vibration testing Class. Quantum Grav. 18(13), 2551–2559 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2018. All right reserved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, S.M., Sakamoto, J., Paik, JA. (2023). Applications of Aerogels in Space Exploration. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_60

Download citation

Publish with us

Policies and ethics