Skip to main content

Chalcogenide Aerogels

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1283 Accesses

Abstract

A class of aerogels based exclusively on metal chalcogenide frameworks was established in 2004, opening up a range of exciting properties and applications not encompassed by their oxide brethren. The optical semiconducting properties are tunable over a wide range from the UV through to the IR depending on the chemical composition, and gels prepared from nanoparticle assembly exhibit the characteristic quantum confinement effects of their nanoparticle building blocks. The soft Lewis basic characteristics of the framework and the presence of an interconnected pore network result in unique sorption properties that may be suitable for environmental remediation, gas separation, catalysis, renewable energy, and energy storage. This chapter presents a detailed description of the advances in chalcogenide aerogels since they were initially reported in 2004, focusing on the different methods of synthesis developed, the consequent physicochemical properties, and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bag, S., Arachchige, I.U., Kanatzidis, M.G.: Aerogels from metal chalcogenides and their emerging unique properties. J. Mater. Chem. 18, 3628–3632 (2008)

    CAS  Google Scholar 

  2. Brock, S.L., Arachchige, I.U., Kalebaila, K.K.: Metal chalcogenide gels, xerogels and aerogels. Comments Inorg. Chem. 27, 103–106 (2006)

    CAS  Google Scholar 

  3. Arachchige, I.U., Brock, S.L.: Sol-gel methods for the assembly of metal chalcogenide quantum dots. Acc. Chem. Res. 40, 801–809 (2007)

    CAS  Google Scholar 

  4. Gaponik, N., Herrmann, A.-K., Eychmüller, A.: Colloidal nanocrystal-based gels and aerogels: material aspects and application perspectives. J. Phys. Chem. Lett. 3, 8–17 (2012)

    CAS  Google Scholar 

  5. Wen, D., Eychmüller, A.: 3d assembly of preformed colloidal nanoparticles into gels and aerogels: function-led design. Chem. Commun. 53, 12608–12621 (2017)

    CAS  Google Scholar 

  6. Ziegler, C., Wolf, A., Liu, W., Herrmann, A.K., Gaponik, N., Eychmüller, A.: Modern inorganic aerogels. Angew. Chem. Int. Ed. 56, 13200–13221 (2017)

    CAS  Google Scholar 

  7. Sriram, M.A., Kumta, P.N.: The thio-sol-gel synthesis of titanium disulfide and niobium disulfide. J. Mater. Chem. 8, 2453–2463 (1998)

    CAS  Google Scholar 

  8. Carmalt, C.J., Dinnage, C.W., Parkin, I.P.: Thio sol-gel synthesis of titanium disulfide from titanium thiolates. J. Mater. Chem. 10, 2823–2826 (2000)

    CAS  Google Scholar 

  9. Carmalt, C.J., Dinnage, C.W., Parkin, I.P., White, A.J.P., Williams, D.J.: Synthesis of a homoleptic niobium(V) thiolate complex and the preparation of niobium sulfide via thio “sol−gel” and vapor phase thin-film experiments. Inorg. Chem. 41, 3668–3672 (2002)

    CAS  Google Scholar 

  10. Purdy, A.P., Berry, A.D., George, C.F.: Synthesis, structure, and thiolysis reactions of pyridine soluble alkaline earth and yttrium thiolates. Inorg. Chem. 36, 3370–3375 (1997)

    CAS  Google Scholar 

  11. Allen, G.C., Paul, M., Dunleavy, M.: Characterization of lanthanum sulphides. Adv. Mater. 4, 424–427 (1992)

    CAS  Google Scholar 

  12. Stanić, V., Pierre, A.C., Etsell, T.H., Mikula, R.J.: Preparation of tungsten sulfides by sol-gel processing. J. Non-Cryst. Solids. 220, 58–62 (1997)

    Google Scholar 

  13. Stanić, V., Etsell, T.H., Pierre, A.C., Mikula, R.J.: Sol-gel processing of ZnS. Mater. Lett. 31, 35–38 (1997)

    Google Scholar 

  14. Stanić, V., Pierre, A.C., Etsell, T.H., Mikula, R.J.: Influence of reaction parameters on the microstructure of the germanium disulfide gel. J. Am. Ceram. Soc. 83, 1790–1796 (2000)

    Google Scholar 

  15. Stanić, V., Etsell, T.H., Pierre, A.C., Mikula, R.J.: Metal sulfide preparation from a sol-gel product and sulfur. J. Mater. Chem. 7, 105–107 (1997)

    Google Scholar 

  16. Stanić, V., Pierre, A.C., Etsell, T.H., Mikula, R.J.: Chemical kinetics study of the sol−gel processing of GeS2. J. Phys. Chem. A. 105, 6136–6143 (2001)

    Google Scholar 

  17. Kalebaila, K.K., Georgiev, D.G., Brock, S.L.: Synthesis and characterization of germanium sulfide aerogels. J. Non-Cryst. Solids. 352, 232–240 (2006)

    CAS  Google Scholar 

  18. Bag, S., Trikalitis, P.N., Chupas, P.J., Armatas, G.S., Kanatzidis, M.G.: Porous semiconducting gels and aerogels from chalcogenide clusters. Science. 317, 490–493 (2007)

    CAS  Google Scholar 

  19. Maclachlan, M.J., Coombs, N., Ozin, G.A.: Non-aqueous supramolecular assembly of mesostructured metal germanium sulfides from (Ge4S10)4− clusters. Nature. 397, 681–684 (1999)

    CAS  Google Scholar 

  20. Trikalitis, P.N., Rangan, K.K., Bakas, T., Kanatzidis, M.G.: Varied pore organization in mesostructured semiconductors based on the [SnSe4]4− anion. Nature. 410, 671–675 (2001)

    CAS  Google Scholar 

  21. Korlann, S.D., Riley, A.E., Kirsch, B.L., Mun, B.S., Tolbert, S.H.: Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor. J. Am. Chem. Soc. 127, 12516–12527 (2005)

    CAS  Google Scholar 

  22. Liu, J., He, K., Wu, W., Song, T.-B., Kanatzidis, M.G.: In situ synthesis of highly dispersed and ultrafine metal nanoparticles from chalcogels. J. Am. Chem. Soc. 139, 2900–2903 (2017)

    CAS  Google Scholar 

  23. Shan, X., Sui, N., Liu, W., Liu, M., Liu, J.: In situ generation of supported palladium nanoparticles from a Pd/Sn/S chalcogel and applications in 4-nitrophenol reduction and Suzuki coupling. J. Mater. Chem. A. 7, 4446–4450 (2019)

    CAS  Google Scholar 

  24. Bag, S., Kanatzidis, M.G.: Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation. J. Am. Chem. Soc. 132, 14951–14959 (2010)

    CAS  Google Scholar 

  25. Oh, Y., Bag, S., Malliakas, C.D., Kanatzidis, M.G.: Selective surfaces: high-surface-area zinc tin sulfide chalcogels. Chem. Mater. 23, 2447–2456 (2011)

    CAS  Google Scholar 

  26. Subrahmanyam, K.S., Malliakas, C.D., Islam, S.M., Sarma, D., Wu, J., Kanatzidis, M.G.: High-surface-area antimony sulfide chalcogels. Chem. Mater. 28, 7744–7749 (2016)

    CAS  Google Scholar 

  27. Raju, M.M., Kota, S.S.: Highly efficient chalcogel-based molecular filters. J. Chem. Eng. Data. 63, 3449–3458 (2018)

    CAS  Google Scholar 

  28. Davaasuren, B., Emwas, A.-H., Rothenberger, A.: MAu2GeS4-chalcogel (M = Co, Ni): heterogeneous intra- and intermolecular hydroamination catalysts. Inorg. Chem. 56, 9609–9616 (2017)

    CAS  Google Scholar 

  29. Ahmed, E., Rothenberger, A.: Enhancement in CO2 adsorption capacity and selectivity in the chalcogenide aerogel CuSb2S4 by post-synthetic modification with LiCl. Microporous Mesoporous Mater. 220, 247–252 (2016)

    CAS  Google Scholar 

  30. Edhaim, F., Rothenberger, A.: Preferential adsorption of volatile hydrocarbons on high surface area chalcogels KMBiTe3 (M = Cr, Zn, Fe). Adv. Powder Technol. 29, 654–663 (2018)

    CAS  Google Scholar 

  31. Bag, S., Gaudette, A.F., Bussell, M.E., Kanatzidis, M.G.: Spongy chalcogels of non-platinum metals acts as effective hydrodesulfurization catalysts. Nat. Chem. 1, 217–224 (2009)

    CAS  Google Scholar 

  32. Polychronopoulou, K., Malliakas, C.D., He, J., Kanatzidis, M.G.: Selective surfaces: quaternary co(Ni)MoS-based chalcogels with divalent (Pb2+, Cd2+, Pd2+) and trivalent (Cr3+, Bi3+) metals for gas separation. Chem. Mater. 24, 3380–3392 (2012)

    CAS  Google Scholar 

  33. Shafaei-Fallah, M., Rothenberger, A., Katsoulidis, A.P., He, J., Malliakas, C.D., Kanatzidis, M.G.: Extraordinary selectivity of CoMo3S13 chalcogel for C2H6 and CO2 adsorption. Adv. Mater. 23, 4857–4860 (2011)

    CAS  Google Scholar 

  34. Subrahmanyam, K.S., Malliakas, C.D., Sarma, D., Armatas, G.S., Wu, J., Kanatzidis, M.G.: Ion-exchangeable molybdenum sulfide porous chalcogel: gas adsorption and capture of iodine and mercury. J. Am. Chem. Soc. 137, 13943–13948 (2015)

    CAS  Google Scholar 

  35. Staszak-Jirkovsky, J., Malliakas, C.D., Lopes, P.P., Danilovic, N., Kota, S.S., Chang, K.-C., Genorio, B., Strmcnik, D., Stamenkovic, V.R., Kanatzidis, M.G., Markovic, N.M.: Design of active and stable co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–203 (2016)

    CAS  Google Scholar 

  36. Doan-Nguyen, V.V.T., Subrahmanyam, K.S., Butala, M.M., Gerbec, J.A., Islam, S.M., Kanipe, K.N., Wilson, C.E., Balasubramanian, M., Wiaderek, K.M., Borkiewicz, O.J., Chapman, K.W., Chupas, P.J., Moskovits, M., Dunn, B.S., Kanatzidis, M.G., Seshadri, R.: Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. Chem. Mater. 28, 8357–8365 (2016)

    CAS  Google Scholar 

  37. Subrahmanyam, K.S., Spanopoulos, I., Chun, J., Riley, B.J., Thallapally, P.K., Trikalitis, P.N., Kanatzidis, M.G.: Chalcogenide aerogels as sorbents for noble gases (Xe, Kr). ACS Appl. Mater. Interfaces. 9, 33389–33394 (2017)

    CAS  Google Scholar 

  38. Shafaei-Fallah, M., He, J., Rothenberger, A., Kanatzidis, M.G.: Ion-exchangeable cobalt polysulfide chalcogel. J. Am. Chem. Soc. 133, 1200–1202 (2011)

    CAS  Google Scholar 

  39. Riley, B.J., Chun, J., Um, W., Lepry, W.C., Matyas, J., Olszta, M.J., Li, X., Polychronopoulou, K., Kanatzidis, M.G.: Chalcogen-based aerogels as sorbents for radionuclide remediation. Environ. Sci. Technol. 47, 7540–7547 (2013)

    CAS  Google Scholar 

  40. Oh, Y., Morris, C.D., Kanatzidis, M.G.: Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J. Am. Chem. Soc. 134, 14604–14608 (2012)

    CAS  Google Scholar 

  41. Yuhas, B.D., Smeigh, A.L., Samuel, A.P.S., Shim, Y., Bag, S., Douvalis, A.P., Wasielewski, M.R., Kanatzidis, M.G.: Biomimetic multifunctional porous chalcogels as solar fuel catalysts. J. Am. Chem. Soc. 133, 7252–7255 (2011)

    CAS  Google Scholar 

  42. Yuhas, B.D., Prasittichai, C., Hupp, J.T., Kanatzidis, M.G.: Enhanced electrocatalytic reduction of CO2 with ternary Ni-Fe4S4 and CO-Fe4S4-based biomimetic chalcogels. J. Am. Chem. Soc. 133, 15854–15857 (2011)

    CAS  Google Scholar 

  43. Yuhas, B.D., Smeigh, A.L., Douvalis, A.P., Wasielewski, M.R., Kanatzidis, M.G.: Photocatalytic hydrogen evolution from FeMoS-based biomimetic chalcogels. J. Am. Chem. Soc. 134, 10353–10356 (2012)

    CAS  Google Scholar 

  44. Shim, Y., Yuhas, B.D., Dyar, S.M., Smeigh, A.L., Douvalis, A.P., Wasielewski, M.R., Kanatzidis, M.G.: Tunable biomimetic chalcogels with Fe4S4 cores and [SnnS2n+2]4− (n = 1, 2, 4) building blocks for solar fuel catalysis. J. Am. Chem. Soc. 135, 2330–2337 (2013)

    CAS  Google Scholar 

  45. Shim, Y., Young, R.M., Douvalis, A.P., Dyar, S.M., Yuhas, B.D., Bakas, T., Wasielewski, M.R., Kanatzidis, M.G.: Enhanced photochemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2+ (M = Pt, Zn, Co, Ni, Sn) centers. J. Am. Chem. Soc. 136, 13371–13380 (2014)

    CAS  Google Scholar 

  46. Banerjee, A., Yuhas, B.D., Margulies, E.A., Zhang, Y., Shim, Y., Wasielewski, M.R., Kanatzidis, M.G.: Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 137, 2030–2034 (2015)

    CAS  Google Scholar 

  47. Liu, J., Kelley, M.S., Wu, W., Banerjee, A., Douvalis, A.P., Wu, J., Zhang, Y., Schatz, G.C., Kanatzidis, M.G.: Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. U. S. A. 113, 5530–5535 (2016)

    CAS  Google Scholar 

  48. Gacoin, T., Malier, L., Boilot, J.-P.: New transparent chalcogenide materials using a sol-gel process. Chem. Mater. 9, 1502–1504 (1997)

    CAS  Google Scholar 

  49. Gacoin, T., Malier, L., Boilot, J.-P.: Sol-gel transition in CdS colloids. J. Mater. Chem. 7, 859–860 (1997)

    CAS  Google Scholar 

  50. Malier, L., Boilot, J.-P., Gacoin, T.: Sulfide gels and films: products of non-oxide gelation. J. Sol-Gel Sci. Technol. 13, 61–64 (1998)

    CAS  Google Scholar 

  51. Capoen, B., Gacoin, T., Nedelec, J.M., Turrell, S., Bouazaoui, M.: Spectroscopic investigations of CdS nanoparticles in sol-gel derived polymeric thin films and bulk silica matrices. J. Mater. Sci. 36, 2565–2570 (2001)

    CAS  Google Scholar 

  52. Gacoin, T., Lahlil, K., Larregaray, P., Boilot, J.-P.: Transformation of CdS colloids: sols, gels, and precipitates. J. Phys. Chem. B. 105, 10228–10235 (2001)

    CAS  Google Scholar 

  53. Mohanan, J.L., Brock, S.L.: A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties. J. Non-Cryst. Solids. 350, 1–8 (2004)

    CAS  Google Scholar 

  54. Mohanan, J.L., Arachchige, I.U., Brock, S.L.: Porous semiconductor chalcogenide aerogels. Science. 307, 397–400 (2005)

    CAS  Google Scholar 

  55. Mohanan, J.L., Brock, S.L.: CdS aerogels: effect of concentration and primary particle size on surface area and opto-electronic properties. J. Sol-Gel Sci. Technol. 40, 341–350 (2006)

    CAS  Google Scholar 

  56. Berestok, T., Guardia, P., Portals, J.B., Estradé, S., Llorca, J., Peiró, F., Cabot, A., Brock, S.L.: Surface chemistry and nano-/microstructure engineering on photocatalytic In2S3 nanocrystals. Langmuir. 34, 6470–6479 (2018)

    CAS  Google Scholar 

  57. Evans, B.J., Doi, J.T., Musker, W.K.: 19FNMR study of the reaction of p-fluorobenzenethiol and disulfide with periodate and other selected oxidizing agents. J. Org. Chem. 55, 2337–2344 (1990)

    Google Scholar 

  58. Kalebaila, K.K., Brock, S.L.: Lead selenide nanostructured aerogels and xerogels. Z. Anorg. Allg. Chem. 638, 2598–2603 (2012)

    CAS  Google Scholar 

  59. Arachchige, I.U., Brock, S.L.: Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J. Am. Chem. Soc. 128, 7964–7971 (2006)

    CAS  Google Scholar 

  60. Pala, I.R., Arachchige, I.U., Georgiev, D.G., Brock, S.L.: Reversible gelation of II–VI nanocrystals: the nature of interparticle bonding and the origin of nanocrystal photochemical instability. Angew. Chem. Int. Ed. 49, 3661–3665 (2010)

    CAS  Google Scholar 

  61. Aldana, J., Wang, Y.A., Peng, X.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850 (2001)

    CAS  Google Scholar 

  62. Yao, Q., Brock, S.L.: Porous CdTe nanocrystal assemblies: ligation effects on the gelation process and the properties of resultant aerogels. Inorg. Chem. 50, 9985–9992 (2011)

    CAS  Google Scholar 

  63. Korala, L., Brock, S.L.: Aggregation kinetics of metal chalcogenide nanocrystals: generation of transparent CdSe (ZnS) core (shell) gels. J. Phys. Chem. C. 116, 17110–17117 (2012)

    CAS  Google Scholar 

  64. Davis, J.L., Chalifoux, A.M., Brock, S.L.: Role of crystal structure and chalcogenide redox properties on the oxidative assembly of cadmium chalcogenide nanocrystals. Langmuir. 33, 9434–9443 (2017)

    CAS  Google Scholar 

  65. Arachchige, I.U., Mohanan, J.L., Brock, S.L.: Sol-gel processing of semiconducting metal chalcogenide xerogels: influence of dimensionality on quantum confinement effects in a nanoparticle network. Chem. Mater. 17, 6644–6650 (2005)

    CAS  Google Scholar 

  66. Yu, H., Liu, Y., Brock, S.L.: Tuning the optical band gap of quantum dot assemblies by varying network density. ACS Nano. 3, 2000–2006 (2009)

    CAS  Google Scholar 

  67. Trindale, T.O., O'Brien, P., Pickett, N.L.: Nanocrystalline semiconductors: synthesis, properties and perspectives. Chem. Mater. 13, 3843–3858 (2001)

    Google Scholar 

  68. Arachchige, I.U., Brock, S.L.: Highly luminescent quantum-dot monoliths. J. Am. Chem. Soc. 129, 1840–1841 (2007)

    CAS  Google Scholar 

  69. Yu, H., Bellair, R., Kannan, R.M., Brock, S.L.: Engineering strength, porosity, and emission intensity of nanostructured CdSe networks by altering the building-block shape. J. Am. Chem. Soc. 130, 5054–5055 (2008)

    CAS  Google Scholar 

  70. Yu, H., Brock, S.L.: Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels). ACS Nano. 2, 1563–1570 (2008)

    CAS  Google Scholar 

  71. Yao, Q., Arachchige, I.U., Brock, S.L.: Expanding the repertoire of chalcogenide nanocrystal networks: Ag2Se gels and aerogels by cation exchange reactions. J. Am. Chem. Soc. 131, 2800–2801 (2009)

    CAS  Google Scholar 

  72. Gaponik, N., Wolf, A., Marx, R., Lesnyak, V., Schilling, K., Eychmüller, A.: Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: gels and aerogels as building blocks for nanotechnology. Adv. Mater. 20, 4257–4262 (2008)

    CAS  Google Scholar 

  73. Ganguly, S., Zhou, C., Morelli, D., Sakamoto, J., Brock, S.L.: Synthesis and characterization of telluride aerogels: effect of gelation on thermoelectric performance of Bi2Te3 and Bi2-xSbxTe3 nanostructures. J. Phys. Chem. C. 116, 17431–17439 (2012)

    CAS  Google Scholar 

  74. Ganguly, S., Brock, S.L.: Toward nanostructured thermoelectrics: synthesis and characterization of lead telluride gels and aerogels. J. Mater. Chem. 21, 8800–8806 (2011)

    CAS  Google Scholar 

  75. Yao, Q., Brock, S.L.: Optical sensing of triethylamine using CdSe aerogels. Nanotechnology. 21, 115502.:1–10 (2010)

    Google Scholar 

  76. Yuan, J., Wen, D., Gaponik, N., Eychmüller, A.: Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew. Chem. Int. Ed. 52, 976–979 (2013)

    CAS  Google Scholar 

  77. Korala, L., Germain, J., Chen, E.M., Pala, I., Li, D., Brock, S.L.: CdS aerogels as efficient photocatalysts for degradation of organic dyes under visible light irradiation. Inorg. Chem. Front. 4, 1451–1457 (2017)

    CAS  Google Scholar 

  78. Pala, I.R., Brock, S.L.: ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water. ACS Appl. Mater. Interfaces. 4, 2160–2167 (2012)

    CAS  Google Scholar 

  79. Korala, L., Li, L., Brock, S.L.: Transparent conducting films of CdSe(ZnS) Core(Shell) quantum dot Xerogels. Chem. Commun. 48, 8523–8525 (2012)

    CAS  Google Scholar 

  80. Korala, L., Wang, Z., Liu, Y., Maldonado, S., Brock, S.L.: Uniform thin films of CdSe and CdSe(ZnS) Core(Shell) quantum dots by sol–gel assembly: enabling photoelectrochemical characterization and electronic applications. ACS Nano. 7, 1215–1223 (2013)

    CAS  Google Scholar 

  81. De Freitas, J.N., Korala, L., Reynolds, L.X., Haque, S.A., Brock, S.L., Nogueira, A.F.: Connecting the (quantum) dots: towards hybrid photovoltaic devices based on chalcogenide gels. Phys. Chem. Chem. Phys. 14, 15180–15184 (2012)

    Google Scholar 

  82. Lübkemann, F., Miethe, J.F., Steinbach, F., Rusch, P., Schlosser, A., Zámbó, D., Heinemeyer, T., Natke, D., Zok, D., Dorfs, D., Bigall, N.C.: Patterning of nanoparticle-based aerogels and xerogels by inkjet printing. Small. 15, 1902186.:1902181–1902188 (2019)

    Google Scholar 

  83. Lesnyak, V., Voitekhovich, S.V., Gaponik, P.N., Gaponik, N., Eychmüller, A.: CdTe nanocrystals capped with a tetrazolyl analogue of thioglycolic acid: aqueous synthesis, characterization, and metal-assisted assembly. ACS Nano. 4, 4090–4096 (2010)

    CAS  Google Scholar 

  84. Lesnyak, V., Wolf, A., Dubavik, A., Borchardt, L., Voitekhovich, S.V., Gaponik, N., Kaskel, S., Eychmüller, A.: 3D assembly of semiconductor and metal nanocrystals: hybrid CdTe/Au structures with controlled content. J. Am. Chem. Soc. 133, 13413–13420 (2011)

    CAS  Google Scholar 

  85. Wolf, A., Lesnyak, V., Gaponik, N., Eychmueller, A.: Quantum-dot-based (aero)gels: control of the optical properties. J. Phys. Chem. Lett. 3, 2188–2193 (2012)

    CAS  Google Scholar 

  86. Singh, A., Lindquist, B.A., Ong, G.K., Jadrich, R.B., Singh, A., Ha, H., Ellison, C.J., Truskett, T.M., Milliron, D.J.: Linking semiconductor nanocrystals into gel networks through all-inorganic bridges. Angew. Chem. Int. Ed. 54, 14840–14844 (2015)

    CAS  Google Scholar 

  87. Sayevich, V., Cai, B., Benad, A., Haubold, D., Sonntag, L., Gaponik, N., Lesnyak, V., Eychmüller, A.: 3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels. Angew. Chem. Int. Ed. 55, 6334–6338 (2016)

    CAS  Google Scholar 

  88. Hewavitharana Indika, K., Brock Stephanie, L.: Application of aqueous-based covalent crosslinking strategies to the formation of metal chalcogenide gels and aerogels. Z. Phys. Chem. 232, 1697–1706 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Brock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brock, S.L., Yu, H. (2023). Chalcogenide Aerogels. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_38

Download citation

Publish with us

Policies and ethics