Skip to main content

Synthesis of Metal Oxide Aerogels via Epoxide-Assisted Gelation of Metal Salts

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Abstract

Over the past two decades, the diversity of metal and metalloid oxide materials prepared using sol–gel techniques has increased significantly. This transformation can be attributed in part to the development of the technique known as epoxide-assisted gelation. The process utilizes organic epoxides as co-reactants for the sol–gel polymerization of simple inorganic metal salts in aqueous or alcoholic media. In this approach, the epoxide acts as a proton scavenger, which drives hydrolysis and condensation of hydrated metal species in the sol–gel reaction. This process is generalizable and applicable to the synthesis of a wide range of metal and metalloid oxide aerogels, xerogels, and nanocomposites. In addition, modification of synthetic parameters allows for control over the structure and properties of the sol–gel product. The method is particularly amenable to the synthesis of multicomponent and nanocomposite sol–gel systems with intimately mixed nanostructures. This chapter describes both the reaction mechanisms associated with epoxide-assisted gelation and an overview of materials that have been prepared using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 22 November 2023

    A correction has been published.

References

  1. Hüsing, N., Schubert, U.: Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–47 (1998)

    Google Scholar 

  2. Pierre, A.C., Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4265 (2002)

    CAS  Google Scholar 

  3. Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)

    CAS  Google Scholar 

  4. Brinker, C.J., Scherer, G.W.: Sol–Gel Science: The Physics and Chemistry of sol–Gel Processing. Academic (1990)

    Google Scholar 

  5. Gash, A.E., Tillotson, T.M., Satcher, J.H., Poco, J.F., Hrubesh, L.W., Simpson, R.L.: Use of epoxides in the sol-gel synthesis of porous iron oxide monoliths from Fe(III) salts. Chem. Mater. 13, 999–1007 (2001)

    CAS  Google Scholar 

  6. Ziese, W.: Die Reaktion von Äthylenoxyd mit Lösungen von Erd- und Schwermetallhalogeniden. Ein neur Weg zur Gewinnung von Solen und reversiblen Gelen von Metalloxydhydraten. Berichte der deutschen chemischen Gesellschaft. 66, 1965–1972 (1933)

    Google Scholar 

  7. Kearby, K., Kistler, S.S., Swann Jr., S.: Aerogel catalysts. Conversion of alcohol to amines. J. Ind. Eng. Chem. 30, 1082–1086 (1938)

    CAS  Google Scholar 

  8. Itoh, H., Tabata, T., Kokitsu, M., Okazaki, N., Imizu, Y., Tada, A.: Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum chloride – a new sol-gel method using propylene oxide as a gelation promoter. J. Ceram. Soc. Jpn. 101, 1081–1083 (1993)

    CAS  Google Scholar 

  9. Tillotson, T.M., Sunderland, W.E., Thomas, I.M., Hrubesh, L.W.: Synthesis of lanthanide and lanthanide-silicate aerogels. J. Sol-Gel Sci. Technol. 1, 241 (1994)

    CAS  Google Scholar 

  10. Jirgensons, B., Straumanis, M.E.: A Short Textbook of Colloid Chemistry. The MacMillan Company (1962)

    Google Scholar 

  11. Livage, J., Henry, M., Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid St. Chem. 18, 259 (1988)

    CAS  Google Scholar 

  12. Dobinson, B., Hoffman, W., Stark, B.P.: The Determination of Epoxide Groups. Permagon Press, Oxford (1969)

    Google Scholar 

  13. Gash, A.E., Satcher, J.H., Simpson, R.L.: Strong akaganeite aerogel monolith using epoxides: synthesis and characterization. Chem. Mater. 15, 3268–3275 (2003)

    CAS  Google Scholar 

  14. Baumann, T.F., Gash, A.E., Chinn, S.C., Sawvel, A.M., Maxwell, R.S., Satcher, J.H.: Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem. Mater. 17, 395–401 (2005)

    CAS  Google Scholar 

  15. Kucheyev, S.O., Baumann, T.F., Cox, C.A., Wang, Y.M., Satcher, J.H., Hamza, A.V., Bradby, J.E.: Nanoengineering mechanically robust aerogels via control of foam morphology. Appl. Phys. Lett. 89, 041911 (2006)

    Google Scholar 

  16. Rewatkar, P.M., Soni, R.U., Sotiriou-Leventis, C., Leventis, N.: A cobalt sunrise: thermites based on LiClO4-filled Co(0) aerogels prepared from polymer-crosslinked cobaltia xerogel powders. ACS Appl. Mater. Interfaces. 11, 22668–22676 (2019)

    CAS  Google Scholar 

  17. Peterson, G.R., Hung-Low, F., Gumeci, C., Bassett, W.P., Korzeniewski, C., Hope-Weeks, L.J.: Preparation−morphology-performance relationships in cobalt aerogels as supercapacitors. ACS Appl. Mater. Interfaces. 6, 1796–1803 (2014)

    CAS  Google Scholar 

  18. Greenwood, N.N., Earnshaw, A.: Chemistry of the elements, p. 1131. Butterworth-Heinemann, Woburn (1998)

    Google Scholar 

  19. Leventis, N., Chandrasekaran, N., Sadekar, A.G., Mulik, S., Sotiriou-Leventis, C.: The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides. J. Mater. Chem. 20, 7456–7471 (2010)

    CAS  Google Scholar 

  20. Garciamartinez, O., Millan, P., Rojas, R.M., Torralvo, M.J.: Cobalt basic salts as inorganic precursors of cobalt oxides and cobalt metal: thermal behavior dependence on experimental conditions. J. Mater. Sci. 23, 1334–1350 (1988)

    CAS  Google Scholar 

  21. Health and Safety Executive – REACH regulations. http://www.hse.gov.uk/reach. 12 Apr 2016

  22. Arrufat, A.V., Budziszewska, M., Lopez, C., Nguyen, A., Sitek, J., Jones, P., Shaw, C., Hayes, I., Cairns, G., Leighton, G.: REACH compliant epoxides used in the synthesis of Fe(III)-based aerogel monoliths for target fabrication. High Power Laser Sci. Eng. 5(e24), 6 (2017)

    Google Scholar 

  23. Leventis, N., Vassilaras, P., Fabrizio, E.F., Dass, A.: Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds. J. Mater. Chem. 17(15), 1502–1508 (2007)

    CAS  Google Scholar 

  24. Gash, A.E., Tillotson, T.M., Satcher, J.H., Hrubesh, L.W., Simpson, R.L.: New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids. 285, 22–28 (2001)

    CAS  Google Scholar 

  25. Davis, M., Zhang, K., Wangb, S., Hope-Weeks, L.J.: Enhanced electrical conductivity in mesoporous 3D indium-tin oxide materials. J. Mater. Chem. 22, 20163 (2012)

    CAS  Google Scholar 

  26. Baumann, T.F., Kucheyev, S.O., Gash, A.E., Satcher, J.H.: Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv. Mater. 17, 1546–1548 (2005)

    CAS  Google Scholar 

  27. Da Cunha, C.R., Toffolo, G.H., Dos Santos, C.E.I., Pezzi, R.P.: Structural, optical and chemical characterizations of sol-gel grown tin oxide aerogels. J. Non-Cryst. Solids. 380, 48–52 (2013)

    Google Scholar 

  28. Correa Baena, J.P., Agrios, A.G.: Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl. Mater. Interfaces. 6(21), 19127–19134 (2014)

    CAS  Google Scholar 

  29. Kucheyev, S.O., van Buuren, T., Baumann, T.F., Satcher, J.H., Willey, T.M., Meulenberg, R.W., Felter, T.E., Poco, J.F., Gammon, S.A., Terminello, L.J.: Electronic structure of titania aerogels from soft x-ray absorption spectroscopy. Phys. Rev. B. 69, 245102 (2004)

    Google Scholar 

  30. Kucheyev, S.O., Baumann, T.F., Wang, Y.M., van Buuren, T., Satcher, J.H.: Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2. J. Electron Spectrosc. Relat. Phenom. 144-147, 609–612 (2005)

    CAS  Google Scholar 

  31. Hong, I.: VOCs degradation performance of TiO2 aerogel photocatalyst prepared in SCF drying. J. Ind. Eng. Chem. (Seoul). 12(6), 918–925 (2006)

    CAS  Google Scholar 

  32. Fears, T.M., Sotiriou-Leventis, C., Winiarz, J.G., Leventis, N.: Economical synthesis of vanadia aerogels via epoxide-assisted gelation of VOCl3. J. Sol-Gel Sci. Technol. 77(1), 244–256 (2016)

    CAS  Google Scholar 

  33. Davis, M., Guemeci, C., Kiel, C., Hope-Weeks, L.J.: Preparation of porous manganese oxide nanomaterials by one-pot synthetic sol-gel method. J. Sol-Gel Sci. Technol. 58(2), 535–538 (2011)

    CAS  Google Scholar 

  34. Leventis, N., Chandrasekaran, N., Sotiriou-Leventis, C., Mumtaz, A.: Smelting in the age of nano: iron aerogels. J. Mater. Chem. 19, 63–65 (2009)

    CAS  Google Scholar 

  35. Wei, T., Chen, C., Chang, K., Lu, S., Hu, C.: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater. 21, 3228–3233 (2009)

    CAS  Google Scholar 

  36. Gill, S.K., Shobe, A.M., Hope-Weeks, L.J.: Synthesis of cobalt oxide aerogels and nanocomposite systems containing single-walled carbon nanotubes. Scanning. 31(3), 132–138 (2009)

    CAS  Google Scholar 

  37. Gash, A.E., Satcher, J.H., Simpson, R.L.: Monolithic nickel(II)-based aerogels using an organic epoxide: the importance of the counterion. J. Non-Cryst. Solids. 350, 145–151 (2004)

    CAS  Google Scholar 

  38. Sisk, C.N., Hope-Weeks, L.J.: Copper(II) aerogels via 1,2-epoxide gelation. J. Mater. Chem. 18, 2607–2610 (2008)

    CAS  Google Scholar 

  39. Leventis, N., Chandrasekaran, N., Sadekar, A.G., Sotiriou-Leventis, C., Lu, H.: One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J. Am. Chem. Soc. 131, 4576–4577 (2009)

    CAS  Google Scholar 

  40. Bi, Y., Ren, H., Zhang, L.: Synthesis of a low-density copper oxide monolithic aerogel using inorganic salt precursor. Adv. Mater. Res. 217–218(Pt. 2, High Performance Structures and Materials Engineering), 1165–1169 (2011)

    Google Scholar 

  41. Du, A., Zhou, B., Shen, J., Xiao, S., Zhang, Z., Liu, C., Zhang, M.: Monolithic copper oxide aerogel via dispersed inorganic sol-gel method. J. Non-Cryst. Solids. 355, 175–181 (2009)

    CAS  Google Scholar 

  42. Gao, Y.P., Sisk, C.N., Hope-Weeks, L.J.: A sol-gel route to synthesize monolithic zinc oxide aerogels. Chem. Mater. 19, 6007–6011 (2007)

    CAS  Google Scholar 

  43. Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.H., Kauzlarich, S.M.: Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route. Chem. Mater. 17, 3345–3351 (2005)

    CAS  Google Scholar 

  44. Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.H., Kauzlarich, S.M.: Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles. Chem. Mater. 18, 4865–4874 (2006)

    CAS  Google Scholar 

  45. Eid, J., Pierre, A.C., Baret, G.: Preparation and characterization of transparent Eu doped Y2O3 aerogel monoliths, for application in luminescence. J. Non-Cryst. Solids. 351(3), 218–227 (2005)

    CAS  Google Scholar 

  46. Helmut, S., Susanne, B., Barbara, M., Sachar, I., Martin, S., Lorenz, R.: Zirconia-based aerogels via hydrolysis of salts and alkoxides: the influence of the synthesis procedures on the properties of the aerogels. Chem. Asian J. 8(9), 2211–2219 (2013)

    Google Scholar 

  47. Suh, D.J., Park, T., Kim, W., Hong, I.: Synthesis of high-surface-area ruthenium oxide aerogels by non-alkoxide sol-gel route. J. Power Sources. 117, 1–6 (2003)

    CAS  Google Scholar 

  48. Ren, H., Zhang, L., Shang, C., Wang, X., Bi, Y.: Synthesis of a low-density tantalum oxide tile-like aerogel monolithic. J. Sol-Gel Sci. Technol. 53(2), 307–311 (2010)

    CAS  Google Scholar 

  49. Prentice, D., Pantoya, M.L., Gash, A.E.: Combustion wave speeds of sol-gel-synthesized tungsten trioxide and nano-aluminum: the effect of impurities on flame propagation. Energy Fuel. 20, 2370 (2006)

    CAS  Google Scholar 

  50. Laberty-Robert, C., Long, J.W., Lucas, E.M., Pettigrew, K.A., Stroud, R.M., Doescher, M.S., Rolison, D.R.: Sol-gel derived ceria nanoarchitectures: synthesis, characterization and electrical properties. Chem. Mater. 18, 50–58 (2006)

    CAS  Google Scholar 

  51. Clapsaddle, B.J., Neumann, B., Wittstock, A., Sprehn, D.W., Gash, A.E., Satcher Jr., J.H., Simpson, R.L., Baeumer, M.: Sol-gel methodology for preparation of lanthanide-oxide aerogel: preparation and characterization. J. Sol-Gel Sci. Technol. 64(2), 381–389 (2012)

    CAS  Google Scholar 

  52. Zhang, H.D., Li, B., Zheng, Q.X., Jiang, M.H., Tao, X.T.: Synthesis and characterization of monolithic Gd2O3 aerogels. J. Non-Cryst. Solids. 354, 4089–4093 (2008)

    CAS  Google Scholar 

  53. Bang, A., Sadekar, A.G., Buback, B., Curtin, B., Acar, S., Kolasinac, D., Yin, W., Rubenstein, D.A., Lu, H., Leventis, N., Sotiriou-Leventis, C.: Evaluation of Dysprosia aerogels as drug delivery systems: a comparative study with random and ordered mesoporous Silicas. ACS Appl. Mater. Interfaces. 6, 4891–4902 (2014)

    CAS  Google Scholar 

  54. Zhang, Z., Guo, D., Yang, X., Zhang, J.: Calcination of ytterbia aerogels leads to ferromagnetic nanoporous ytterbium oxide networks. Mater. Lett. 261, 126866 (2020)

    CAS  Google Scholar 

  55. Reibold, R.A., Poco, J.F., Baumann, T.F., Simpson, R.L., Satcher, J.H.: Synthesis and characterization of a nanocrystalline thoria aerogel. J. Non-Cryst. Solids. 341, 35–39 (2004)

    CAS  Google Scholar 

  56. Reibold, R.A., Poco, J.F., Baumann, T.F., Simpson, R.L., Satcher, J.H.: Synthesis and characterization of a low-density urania (UO3) aerogel. J. Non-Cryst. Solids. 319, 241–246 (2003)

    CAS  Google Scholar 

  57. Gan, L., Xu, Z., Feng, Y., Chen, L.: Synthesis of alumina aerogels by ambient drying method and control of their structures. J. Porous. Mater. 12, 317–321 (2005)

    CAS  Google Scholar 

  58. Tokudome, Y., Fujita, K., Nakanishi, K., Miura, K., Hirao, K.: Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem. Mater. 19, 3393–3398 (2007)

    CAS  Google Scholar 

  59. Hund, J.F., McElfresh, J., Frederick, C.A., Nikroo, A., Greenwood, A.L., Luo, W.: Fabrication and characterization of aluminum oxide aerogel backlighter targets. Fusion Sci. Tech. 51, 701–704 (2007)

    CAS  Google Scholar 

  60. Tokudome, Y., Nakanishi, K., Hanada, T.: Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. J. Ceram. Soc. Jpn. 117, 351–355 (2009)

    CAS  Google Scholar 

  61. Tillotson, T.M., Gash, A.E., Simpson, R.L., Hrubesh, L.W., Satcher, J.H., Poco, J.F.: Nanostructured energetic materials using sol-gel methodologies. J. Non-Cryst. Solids. 285, 338–345 (2001)

    CAS  Google Scholar 

  62. Prakash, A., McCormick, A.V., Zachariah, M.R.: Aero-sol-gel synthesis of nanoporous iron oxide particles: a potential oxidizer for nanoenergetic materials. Chem. Mater. 16, 1466–1471 (2004)

    CAS  Google Scholar 

  63. Leventis, N., Donthula, S., Mandal, C., Ding, M.S., Sotiriou-Leventis, C.: Explosive versus thermite behavior in iron(0) aerogels infiltrated with perchlorates. Chem. Mater. 27, 8126–8137 (2015)

    CAS  Google Scholar 

  64. Mahadik-Khanolkar, S., Donthula, S., Bang, A., Wisner, C., Sotiriou-Leventis, C., Leventis, N.: Polybenzoxazine aerogels. 2. Interpenetrating networks with iron oxide and the Carbothermal synthesis of highly porous monolithic pure iron(0) aerogels as energetic materials. Chem. Mater. 26, 1318–1331 (2014)

    CAS  Google Scholar 

  65. Long, J.W., Logan, M.S., Rhodes, C.P., Carpenter, E.E., Stroud, R.M., Rolison, D.R.: Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J. Am. Chem. Soc. 126, 16879–16889 (2004)

    CAS  Google Scholar 

  66. Park, C., Magana, D., Stiegman, A.E.: High-quality Fe and γ-Fe2O3 magnetic thin films from an epoxide-catalyzed sol-gel process. Chem. Mater. 19, 677–683 (2007)

    CAS  Google Scholar 

  67. Carpenter, E.E., Long, J.W., Rolison, D.R., Logan, M.S., Pettigrew, K., Stroud, R.M., Kuhn, L.T., Hansen, B.R., Mørup, S.: Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels. J. Appl. Phys. 99, 08N711 (2006)

    Google Scholar 

  68. Cui, H., Ren, W.: Low temperature and size controlled synthesis of monodispersed γ-Fe2O3 nanoparticles by an apoxide assisted sol-gel route. J. Sol-Gel Sci. Technol. 47, 81–84 (2008)

    CAS  Google Scholar 

  69. Bali, S., Huggins, F.E., Huffman, G.P., Ernst, R.D., Pugmire, R.J., Eyring, E.M.: Iron aerogel and xerogel catalysts for Fischer-Tropsch synthesis of diesel fuel. Energy Fuel. 23, 14–18 (2009)

    CAS  Google Scholar 

  70. Bali, S., Turpin, G.C., Ernst, R.D., Pugmire, R.J., Singh, V., Seehra, M.S., Eyring, E.M.: Water gas shift catalysis using iron aerogels doped with palladium by the gas-phase incorporation method. Energy Fuel. 22, 1439–1443 (2008)

    CAS  Google Scholar 

  71. Chen, L., Zhu, J., Liu, Y., Cao, Y., Li, H., He, H., Dai, W., Fan, K.: Photocatalytic activity of epoxide sol-gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying. J. Mol. Catal. A. 255, 260–268 (2006)

    CAS  Google Scholar 

  72. Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.H., Kauzlarich, S.M.: A non-alkoxide sol-gel method for the preparation of homogeneous nanocrystalline powders of La0.85Sr0.15MnO3. Chem. Mater. 18, 1928–1937 (2006)

    CAS  Google Scholar 

  73. Brown, P., Hope-Weeks, L.J.: The synthesis and characterization of zinc ferrite aerogels prepared by epoxide addition. J. Sol-Gel Sci. Technol. 51, 238–243 (2009)

    CAS  Google Scholar 

  74. Cui, H., Zayat, M., Levy, D.: Sol-gel synthesis of nanoscaled spinels using propylene oxide as a gelation agent. J. Sol-Gel Sci. Technol. 35, 175–181 (2005)

    CAS  Google Scholar 

  75. Guo, Y., Meyer-Zaika, W., Muhler, M., Vukojevic, S., Epple, M.: Cu/Zn/Al xerogels and aerogels prepared by a sol-gel reaction as catalysts for methanol synthesis. Eur. J. Inorg. Chem. 23, 4774–4781 (2006)

    Google Scholar 

  76. Clapsaddle, B.J., Gash, A.E., Satcher, J.H., Simpson, R.L.: Silicon oxide in an iron(III) oxide matrix: the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as a major phase. J. Non-Cryst. Solids. 331, 190–201 (2003)

    CAS  Google Scholar 

  77. Clapsaddle, B.J., Sprehn, D.W., Gash, A.E., Satcher, J.H., Simpson, R.L.: A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase. J. Non-Cryst. Solids. 350, 173–181 (2004)

    CAS  Google Scholar 

  78. Zhao, L., Clapsaddle, B.J., Satcher, J.H., Schaefer, D.W., Shea, K.J.: Integrated chemical systems: the simultaneous formation of hybrid nanocomposites of iron oxide and organo silsesquioxane. Chem. Mater. 17, 1358–1366 (2005)

    CAS  Google Scholar 

  79. Morris, C.A., Anderson, M.L., Stroud, R.M., Merzbacher, C.I., Rolison, D.R.: Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science. 284, 622 (1999)

    CAS  Google Scholar 

  80. Plantier, K.B., Pantoya, M.L., Gash, A.E.: Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis techniques. Combust. Flame. 140, 299 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

Portions of the work described herein were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Other portions of the work described herein were funded by the Army Research Office (W911NF-14-1-0369, W911NF-12-2-0029, W911NF-10-1-0476) and the National Science Foundation (1530603, 0907291, 0809562, and 0653919) via awards to the Missouri University of Science & Technology (N.L).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Theodore F. Baumann , Alexander E. Gash , Joe H. Satcher Jr , Nicholas Leventis or Stephen A. Steiner III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baumann, T.F., Gash, A.E., Satcher, J.H., Leventis, N., Steiner, S.A. (2023). Synthesis of Metal Oxide Aerogels via Epoxide-Assisted Gelation of Metal Salts. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_17

Download citation

Publish with us

Policies and ethics