Skip to main content

Plant Growth-Promoting Fungi: Diversity and Classification

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Crop diseases take a heavy toll on agriculture. An estimated annual loss due to various diseases ranged from 15 to 20% of the total production. Apart from the yield losses in commercial productions, the losses in storage and perishables are equally significant. Out of several management options of diseases in commercial production (row crops, vegetables, and horticultural crops), the potential use of Plant Growth-Promoting Fungi (PGPF) and its diversity is focused in this chapter. PGPF are integral part of sustainable management strategies in a holistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phyopathology 77:182–189

    Article  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  Google Scholar 

  • Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS (2015) Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Mycobiol 43:49–56

    Article  Google Scholar 

  • Bajaj R, Hu W, Huang YY (2015) The beneficial root endophyte Piriformospora indica reduces of the soybean cyst nematode. Biol Control 90:193–199

    Article  Google Scholar 

  • Bhaskar P (1994) Integrated management of Fusarium wilt of tomato. Ph. D. thesis, Dept. of Plant Pathology, UAS, Bangalore

    Google Scholar 

  • Bisett J (1991) A revision of the genus Trichoderma IV. Additional notes on section Longibrachiatum. Canadian J Bot 69:2418–2420

    Article  Google Scholar 

  • Brunda KS, Jahagirdar S, Kambrekar DN (2018) Antagonistic activity of bacterial endophytes against major soil borne pathogens of soybean. J Expt Zool 6:43–46

    Google Scholar 

  • Brunda KS (2018) Studies on bacterial and fungal endophytes of soybeans (Glycine max (L.) Merrill) against soil borne pathogens. M.Sc. thesis, UAS, Dharwad, KA

    Google Scholar 

  • Collado J, Platas G, Gonzalez I, Pelaez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532

    Article  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  Google Scholar 

  • Fisher PJ, Petrini O (1987) Tissue specificity by fungi endophytic in Ulex europaeus. Sydowia 40:46–50

    Google Scholar 

  • García BFJ, Santamarina MP, Roselló J (2005) Trichoderma: mecanismos de control. Phytoma 172:106–107

    Google Scholar 

  • García-Garza JA, Reeleder RD, Paulitz TC (1997) Degradation of sclerotia of Sclerotinia sclerotiorum by fungus Gnats (Bradysia copropila) and the biocontrol fungi Trichoderma spp. Soil Biol Biochem 29:123–129

    Article  Google Scholar 

  • Guot L, Huang G, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Integr Plant Biol 50:997–1003

    Article  Google Scholar 

  • Harma GE, Sivant A (1990) Improved rhizosphere competence in a protoplast fusion progeny of Trichoderma harzianum. J General Microbiol 37:23–29

    Google Scholar 

  • Harman G, Hotel CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev 2:43–56

    CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb Dtsch Landwirtsch Gesellschaft 98:59–78

    Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore

    Google Scholar 

  • Hyakumachi M (1994) Plant-growth-promoting fungi from turf grass rhizosphere with potential for disease suppression. Soil Microorg 44:53–68

    Google Scholar 

  • Impullitti AE, Malvick DK (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506

    Article  CAS  Google Scholar 

  • Jahagirdar S, Siddaramiah AL, Ramaswamy GR (2000a) Influence of biocontrol agents and MPG-3 on Fusarium oxysporum f. sp. cubense as incitant of panama disease of banana. Plant Dis Res 15:241–243

    Google Scholar 

  • Jahagirdar S, Siddaramaih AL, Chandrappa HM (2000b) Eco friendly integrated management of foot rot of black pepper (Piper nigrum L.). Mysore J Agric Sci 34:47–54

    Google Scholar 

  • Jahagirdar S, Kajjidoni ST, Matiwade PS, DevappaV (2008) Management of tobacco mosaic virus in bidi tobacco in Karnataka through organics. In: Proceedings of national symposium on plant protection held at UAS, Bangalore, 4–6 Dec 2008

    Google Scholar 

  • Jahagirdar S, Patil PV, Basavaraja GT (2009) Role of indigenous technology knowledge in the management of Asian soybean rust caused by Phakopsora pachyrhizi in India. In: The proceedings of world soybean research conference VIII, Beijing, China, 10–15 Aug 2009

    Google Scholar 

  • Jahagirdar S, Sachin K, Ramesh B, Basavaraja GT, Yogesh B (2013) Biointensive management of Asian soybean rust caused by Phakopsora pachyrhizi. Syd Res Crops 14:182–188

    Google Scholar 

  • Jash S (2006) Variability in Trichoderma with reference to some antagonistic, biochemical and ecological behaviours. Ph. D. Thesis, Bidan Chandra Krishi Vishwavidyalaya, Mohanpur, Nadia, WB

    Google Scholar 

  • Jensen B, Knudsen IMB, Andersen B, Nielsen KF, Thrane U, Jensen DF, Larsen J (2013) Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production. Int J Food Microbiol 160:313–322

    Article  CAS  Google Scholar 

  • Körmöczi P, Danilović G, Manczinger L, Jovanović L, Panković D, Vágvölgyi C, Kredics L (2013) Species composition of Trichoderma isolates from the rhizosphere of vegetables grown in Hungarian soils. Fresenius Environ Bull 22:1736–1741

    Google Scholar 

  • Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C, Druzhinina I (2014) Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, London, pp 3–24

    Chapter  Google Scholar 

  • Kubicek CP, Bissett J, Kullnig-Gradinger CM, Druzhinina IS, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–317

    Article  CAS  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 9:753–763

    Article  Google Scholar 

  • Kullnig C, Szakacs G, Kubicek CP (2000) Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. Mycol Res 104:1117–1125

    Article  CAS  Google Scholar 

  • Lewis JA, Papavizas GC (1991) Biocontrol of plant diseases: the approach of tomorrow. Crop Prot 10:95–105

    Article  Google Scholar 

  • Lubna SA, Hamayun M, Gul H, Lee I, Hussain A (2018) Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indol acetic acid. J Plant Interact 13:100–111

    Article  CAS  Google Scholar 

  • Maity A, Pal RK, Chandra R, Singh NV (2014) Penicillium pinophilum: a novel microorganism for nutrient management in pomegranate (Punica granatum L.). Sci Hortic 169:111–117

    Article  CAS  Google Scholar 

  • Mondal G, Dureja P, Sen B (2000) Fungal metabolites from Aspergillus niger AN27 related to plant growth promotion. Indian J Exp Biol 38:84–87

    CAS  PubMed  Google Scholar 

  • Navi SS, Bandyopadhyay R (2002) Biological control of fungal plant pathogens. In: Waller JM, Lenné JM, Waller SJ (eds) Plant pathologists pocketbook, 3rd edn. CAB International, Wallingford, pp 354–365, 516 pp

    Google Scholar 

  • Parikka P, Kivijärvi P, Prokkola S, Kemppainen R (2009) Microbiological quality of organic strawberry fruit. Acta Hort 842:377–380

    Article  Google Scholar 

  • Radhakrishnan R, Shim KB, Lee BW, Hwang CD, Pae SB, Park CH, Kim SU, Lee CK, Baek IY (2013) IAA producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J Microbiol Biotechnol 23:856–863

    Article  CAS  Google Scholar 

  • Rao SKS, Tanvi PK, Dnyanobarao GS, Agrawal T, Kotasthane AS (2016) Efficiency of different Trichoderma isolates on plant growth promoting activity in rice (Oryza sativa L.). Int J Bio Res and Stress Manag 7:489–500

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Samuels GJ, Dodd S, Lu B, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii morphological species. Stud Mycol 56:67–133

    Article  Google Scholar 

  • Samuels GJ, Hebbar PK (2015) Developing Trichoderma-based products for application in agriculture. In: Trichoderma identification and agricultural applications. The American Phytopathological Society, St. Paul, pp 7–34

    Google Scholar 

  • Tiwari KL, Jadhav SK, Fatima A (2007) Culture condition for the production of thermo stable amylase by Penicillium rugulosum. Glob J Biotechnol Biochem 2:21–24

    Google Scholar 

  • Turner D, Kovacs W, Kuhls K, Lieckfeldt E, Peter B, Arisan-Atac I, Strauss J, Samuels GJ, Börner T, Kubicek CP (1997) Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. Mycol Res 101:449–459

    Article  CAS  Google Scholar 

  • Usha S, Padmavathi T (2013) Effect of plant growth promoting microorganisms from rhizosphere of Piper nigrum L. Int J Pharm Bio Sci 4:835–846

    Google Scholar 

  • Verma M, Brar SK, Tyagi R, Surampalli R, Valero J (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Widden P (1984) The effects of temperature on competition for spruce needles among sympatric species of Trichoderma. Mycologia 76:873–883

    Article  Google Scholar 

  • You Y, Park JM, Seo YG, Lee W, Kang M, Kim J (2017) Distribution, characterization, and diversity of the endophytic fungal communities on Korean seacoasts showing contrasting geographic conditions. Mycobiol 45:150–159

    Article  Google Scholar 

  • Zhang C, Druzhinina IS, Kubicek CP, Xu T (2005) Trichoderma biodiversity in China: evidence for a North to South distribution of species in East Asia. FEMS Microbiol Lett 251:251–257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kunta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahagirdar, S., Kambrekar, D.N., Navi, S.S., Kunta, M. (2019). Plant Growth-Promoting Fungi: Diversity and Classification. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_2

Download citation

Publish with us

Policies and ethics