Skip to main content

Characterization of Electrocatalyst

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

In the process of developing a catalyst, understanding their structure and properties is considered essential as it is obligatory to improve their performance or to resolve a failure issue. Hence, the purpose of this invited chapter is to give a brief summary of various characterization tools specifically, X-ray Diffraction (XRD), Brunauer, Emmett, and Teller (BET) technique, Infrared Spectroscopy (IR), UV-visible spectroscopy, Electron microscopy, and Electrochemical techniques, where we discussed the principle, application, and challenges associated with the catalyst characterization. Also, in this chapter, we illustrated the analysis and interpretation of characterization data with an example for better understanding. These perceptive investigations of different characterization tools lead to the establishment of empirical relationships between various factors that govern catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acres BGJK (1980) The characterisation of catalysts. Platin Met Rev 24:14–25. https://doi.org/10.1207/S15327647JCD0204_5

    Article  CAS  Google Scholar 

  2. Amakawa K, Sun L, Guo C et al (2013) How strain affects the reactivity of surface metal oxide catalysts. Angew Chem Int Ed 52:13553–13557. https://doi.org/10.1002/anie.201306620

    Article  CAS  Google Scholar 

  3. Austermann RL, Denley DR, Hart DW, Himelfarb PB, Irwin RM, Narayana M, Szentirmay R, Tang SC, Yeates RC (1987) Catalyst characterization. Anal Chem 59:68R–102R. https://doi.org/10.1021/ac00139a005

  4. Bae YS, Yazayd’n AÖ, Snurr RQ (2010) Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores. Langmuir 26:5475–5483. https://doi.org/10.1021/la100449z

    Article  CAS  Google Scholar 

  5. Bard AJ, Faulkner LR (2004) Electrochemical methods. Fundamentals and applications

    Google Scholar 

  6. Barsoukov E, Ross MJ (2005) Impedance spectroscopy—theory, experiment, and applications

    Google Scholar 

  7. Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2000) Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl Phys Lett 77:3749–3751. https://doi.org/10.1063/1.1332110

    Article  CAS  Google Scholar 

  8. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  9. Choudhury B, Choudhury A (2013) Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int Nano Lett 3:1. https://doi.org/10.1186/2228-5326-3-55

    Article  CAS  Google Scholar 

  10. Christy AA, Kvalheim OM, Velapoldi RA (1995) Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka-Munk equation. Vib Spectrosc 9:19–27. https://doi.org/10.1016/0924-2031(94)00065-O

    Article  CAS  Google Scholar 

  11. Crocker M, Herold RHM, Wilson AE, et al (1996) H-1 NMR spectroscopy of titania—chemical shift assignments for hydroxy groups in crystalline and amorphous forms of TiO2. J Chem Soc Trans 92:2791–2798

    Google Scholar 

  12. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64:2456. https://doi.org/10.1063/1.341681

    Article  Google Scholar 

  13. Ebraheem S, El-Saied A (2013) Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. Mater Sci Appl 04:324–329. https://doi.org/10.4236/msa.2013.45042

    Article  CAS  Google Scholar 

  14. El-Denglawey A (2011) Characterization of As-Se-Tl films near infrared region. J Non Cryst Solids 357:1757–1763. https://doi.org/10.1016/j.jnoncrysol.2011.01.026

    Article  CAS  Google Scholar 

  15. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  16. Haram SK, Quinn BM, Bard AJ (2001) Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J Am Chem Soc 123:8860–8861. https://doi.org/10.1021/ja0158206

    Article  CAS  Google Scholar 

  17. Haram SK, Kshirsagar A, Gujarathi YD et al (2011) Quantum confinement in CdTe quantum dots: investigation through cyclic voltammetry supported by density functional theory (DFT). J Phys Chem C 115:6243–6249. https://doi.org/10.1021/jp111463f

    Article  CAS  Google Scholar 

  18. Hernandes AC (2006) Thermoluminescence kinetic parameters of Bi4Ge3O12 single crystals. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At 250:390–395. https://doi.org/10.1016/j.nimb.2006.04.144

  19. Jonscher AK (1990) The “universal” dielectric response. III. IEEE Electr Insul Mag 6. https://doi.org/10.1109/57.63055

  20. Khan MAM, Kumar S, Ahamed M et al (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6:1–8. https://doi.org/10.1186/1556-276X-6-434

    Article  CAS  Google Scholar 

  21. Kim JS, Kim B, Kim H, Kang K (2018) Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater 8:1–26. https://doi.org/10.1002/aenm.201702774

    Article  CAS  Google Scholar 

  22. Klotz D, Grave DA, Rothschild A (2017) Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. Phys Chem Chem Phys 19:20383–20392. https://doi.org/10.1039/c7cp02419c

    Article  CAS  Google Scholar 

  23. Leofanti G, Tozzola G, Padovan M, Petrini G, Bordiga S, Zecchina A (1997) Catalyst characterization: characterization techniques. Catal Today 34:307–327. https://doi.org/10.1016/s0920-5861(96)00056-9

  24. Leonat L, Sbârcea G, Bran̂zoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull Ser B Chem Mater Sci 75:111–118

    Google Scholar 

  25. Lin Y, Kapadia R, Yang J et al (2015) Role of TiO2 surface passivation on improving the performance of P-InP photocathodes. J Phys Chem C 119:2308–2313. https://doi.org/10.1021/jp5107313

    Article  CAS  Google Scholar 

  26. Liu L, Chen X (2014) Titanium dioxide nanomaterials: self-structural modifications. Chem Rev 114:9890–9918. https://doi.org/10.1021/cr400624r

    Article  CAS  Google Scholar 

  27. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  28. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  Google Scholar 

  29. Miklavcic SJ, Yang L (2004) Framework for homogeneous and inhomogeneous optical media. J Opt Soc Am A Opt Image Sci Vis 21:1942–1952

    Google Scholar 

  30. Moulijn JA, Van Leeuwen PWNM, Van Santen RA (1993) Catalysis: an integrated approach to homogeneous, heterogeneous and industrial catalysis. Stud Surf Sci Catal 79:363–400. https://doi.org/10.1016/S0167-2991(08)63814-8

    Article  Google Scholar 

  31. Mozia S, Tomaszewska M, Kosowska B et al (2004) Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Appl Catal B Environ 55:195–200. https://doi.org/10.1016/j.apcatb.2004.09.019

    Article  CAS  Google Scholar 

  32. Pu P, Cachet H, Laidani N, Sutter EMM (2012) Influence of pH on surface states behavior in TiO2 nanotubes

    Google Scholar 

  33. Sadan MB, Houben L, Enyashin AN et al (2008) Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures. Proc Natl Acad Sci 105:15643–15648. https://doi.org/10.1073/pnas.0805407105

    Article  Google Scholar 

  34. Shah RS, Shah RR, Pawar RB, Gayakar PP (2015) UV-visible spectroscopy—a review. ISSN: 2249-6807

    Google Scholar 

  35. Shin S, Han HS, Kim JS et al (2015) A tree-like nanoporous WO3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. J Mater Chem A 3:12920–12926. https://doi.org/10.1039/c5ta00823a

    Article  CAS  Google Scholar 

  36. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:1–21. https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  37. Subbaiah YPV, Prathap P, Reddy KTR (2006) Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl Surf Sci 253:2409–2415. https://doi.org/10.1016/j.apsusc.2006.04.063

    Article  CAS  Google Scholar 

  38. Suriye K, Lobo-Lapidus RJ, Yeagle GJ, et al (2008) Probing defect sites on TiO2 with [Re3(CO)12H3]: spectroscopic characterization of the surface species. Chem A Eur J 14:1402–1414. https://doi.org/10.1002/chem.200701514

  39. Szczepankiewicz SH, Colussi AJ, Hoffmann MR (2002) Infrared spectra of photoinduced species on hydroxylated titania surfaces. J Phys Chem B 104:9842–9850. https://doi.org/10.1021/jp0007890

    Article  CAS  Google Scholar 

  40. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  41. Union I, Pure OF, Chemistry A (1985) Reporting physisorption data for. Area 57:603–619

    Google Scholar 

  42. Usseglio S, Calza P, Damin A et al (2006) Tailoring the selectivity of Ti-based photocatalysts (TiO2 and microporous ETS-10 and ETS-4) by playing with surface morphology and electronic structure. Chem Mater 18:3412–3424. https://doi.org/10.1021/cm052841g

    Article  CAS  Google Scholar 

  43. Walton KS, Snurr RQ (2007) Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J Am Chem Soc 129:8552–8556. https://doi.org/10.1021/ja071174k

    Article  CAS  Google Scholar 

  44. Wang ZL (2003) New developments in transmission electron microscopy for nanotechnology. Adv Mater 15:1497–1514. https://doi.org/10.1002/adma.200300384

    Article  CAS  Google Scholar 

  45. Wang Z, Yang C, Lin T et al (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23:5444–5450. https://doi.org/10.1002/adfm.201300486

    Article  CAS  Google Scholar 

  46. Wang Y, Tang W, Zhang L (2015) Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J Mater Sci Technol 31:175–181. https://doi.org/10.1016/j.jmst.2014.11.009

    Article  CAS  Google Scholar 

  47. Williams DB (2009) Transmission electron microscopy: a textbook for materials science

    Google Scholar 

  48. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  49. Yaghoubi H, Li Z, Chen Y et al (2015) Toward a visible light-driven photocatalyst: the effect of midgap-states-induced energy gap of undoped TiO2 nanoparticles. ACS Catal 5:327–335. https://doi.org/10.1021/cs501539q

    Article  CAS  Google Scholar 

  50. Yeh T-F, Teng H (2012) Graphite oxide with different oxygen contents as photocatalysts for hydrogen and oxygen evolution from water. ECS Trans 41:7–26. https://doi.org/10.1149/1.3703509

    Article  CAS  Google Scholar 

  51. Yong X, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  Google Scholar 

  52. Zecchina A, Petrini G, Padovan M et al (2002) Catalyst characterization: characterization techniques. Catal Today 34:307–327. https://doi.org/10.1016/s0920-5861(96)00056-9

    Article  Google Scholar 

  53. Zhang J (2008) PEM fuel cell, catalyst and catalyst layer. https://doi.org/10.1007/978-1-84800-936-3

  54. Zhou M, Dong J, Zhang L, Qin Q (2001) Reactions of group V metal atoms with water molecules. Matrix isolation FTIR and quantum chemical studies. J Am Chem Soc 123:135–141. https://doi.org/10.1021/ja003072z

    Article  CAS  Google Scholar 

  55. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180. https://doi.org/10.1039/C4CS00448E

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Swaminathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swaminathan, J., Meiyazhagan, A. (2020). Characterization of Electrocatalyst. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_17

Download citation

Publish with us

Policies and ethics