Skip to main content

Einstein Equations, Schwarzschild Solution, and Gravitational Waves

  • Chapter
  • First Online:
A Primer in Tensor Analysis and Relativity

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 2483 Accesses

Abstract

In order to formulate the equations for the metric, the first step is to consider an alternative definition of the energy–momentum tensor of particles and fields. In Chap. 2, we already learned the canonical definition of the energy and momentum conservations in classical mechanics and the energy–momentum tensor of particles and fields in special relativity. It happens that in general relativity, things somehow turn out to be simpler—here, we gain an alternative and in fact more economic, dynamical definition of the energy–momentum tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The examples of such coordinates were suggested by Finkelstein [7] and Kruskal [8].

  2. 2.

    Author is especially grateful to V. P. Frolov for explaining this point.

References

  1. F. Jüttner, Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. Bd 116, 145 (1911)

    Google Scholar 

  2. W. Pauli, Theory of Relativity (Dover, 1981)

    Google Scholar 

  3. S. Weinberg, Gravitation and Cosmology (Wiley, 1972)

    Google Scholar 

  4. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Padmanabhan, Cosmological constant: the weight of the vacuum. Phys. Rep. 380, 235 (2003). arXiv:hep-th/0212290

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Finkelstein, Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 110, 965 (1958)

    Article  ADS  Google Scholar 

  8. M. Kruskal, Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space–Time (Cambridge University Press, 1973)

    Google Scholar 

  10. C.W. Misner, K.S. Thorn, J.A. Wheeler, Gravitation (W.H. Freeman and C, San Francisco, 1973)

    Google Scholar 

  11. R. D’Inverno, Introducing Einstein’s Relativity (Oxford University Press, 1992–1998)

    Google Scholar 

  12. V.P. Frolov, I.D. Novikov, Black Hole Physics—Basic Concepts and New Developments (Kluwer Academic Publishers, 1989)

    Google Scholar 

  13. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1998)

    Google Scholar 

  14. V.P. Frolov, A. Zelnikov, Introduction to Black Hole Physics (Oxford University Press, 2015)

    Google Scholar 

  15. D.F. Carneiro, E.A. Freitas, B. Gonçalves, A.G. de Lima, I.L. Shapiro, On useful conformal tranformations in general relativity. Gravit. Cosmol. 40, 305 (2004). arXiv:gr-qc/0412113

  16. W. Siegel, Fields. arXiv:hep-th/9912205

  17. L.D. Landau, E.M. Lifshits, The Classical Theory of Fields—Course of Theoretical Physics, vol. 2 (Butterworth-Heinemann, 1987)

    Google Scholar 

  18. I.L. Shapiro, G. de Berredo Peixoto, Lecture Notes on Newtonian Mechanics: Lessons from Modern Concepts (Springer, 2013)

    Google Scholar 

  19. B.P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837

  20. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, 2007)

    Google Scholar 

  21. B.P. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017)

    Google Scholar 

  22. K.S. Stelle, Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya L. Shapiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapiro, I.L. (2019). Einstein Equations, Schwarzschild Solution, and Gravitational Waves. In: A Primer in Tensor Analysis and Relativity. Undergraduate Lecture Notes in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-26895-4_15

Download citation

Publish with us

Policies and ethics