Skip to main content

Simulation in Regional Anesthesia

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Anesthesiology

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

There is a growing emphasis on the use of simulation in regional anesthesia. Simulation provides an opportunity for trainees to gain repetitive procedural practice in the performance of nerve blocks and exposure to uncommon clinical situations while eliminating potential harm to patients. Part task trainers, both inorganic and organic, are commonly used to improve coordination and tactile skills with respect to the art of needling. High-fidelity simulation further allows trainees exposure to uncommon clinical scenarios (i.e., local anesthetic systemic toxicity) and to practice crisis resource management skills in a multidisciplinary setting. There is ongoing investigation into the use of simulation for both formative and summative assessment in regional anesthesia. Moreover, the uniform environment of simulation also allows for the evaluation of novel techniques and equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACGME:

Accreditation Council for Graduate Medical Education

ASRA:

American Society of Regional Anesthesia and Pain Medicine

AV:

Atrioventricular

CAD:

Coronary artery disease

CNS:

Central nervous system

CPR:

Cardiopulmonary resuscitation

EKG:

Electrocardiogram

ESRA:

European Society of Regional Anaesthesia and Pain Therapy

IV:

Intravenous catheter

LAST:

Local anesthetic systemic toxicity

OSCE:

Objective structured clinical examinations

References

  1. ACGME. ACGME program requirements for graduate medical education in anesthesiology. 2015 Feb [cited 2016 July 25]. Available from: https://www.acgme.org/Portals/0/PFAssets/ProgramRequirements/040_anesthesiology_2016.pdf.

  2. The American Board of Anesthesiology. Simulation Education: American Society of Anesthesiologists. [cited 2016 July 25]. Available from: http://www.theaba.org/MOCA/About-MOCA-2-0.

  3. Sites BD, Chan VW, Neal JM, Weller R, Grau T, Koscielniak-Nielsen ZJ, et al. The American Society of Regional Anethesia and Pain Medicine and the European Society of Regional Anaesthesia and Pain Therapy Joint Committee Recommendations for education and training in ultrasound-guided regional anesthesia. Reg Anesth Pain Med. 2010;35:S74–80.

    Article  Google Scholar 

  4. Barrington MJ, Wong DM, Slater B, Ivanusic JJ, Ovens M. Ultrasound-guided regional anesthesia: how much practice do novices require before achieving competency in ultrasound needle visualization using a cadaver model. Reg Anesth Pain Med. 2012;37(3):334–9.

    Article  Google Scholar 

  5. Sites BD, Gallagher JD, Cravero J, Lundberg J, Blike G. The learning curve associated with a simulated ultrasound-guided interventional task by inexperienced anesthesia residents. Reg Anesth Pain Med. 2004;29(6):544–8.

    Article  Google Scholar 

  6. Marhofer P, Greher M, Kapral S. Ultrasound guidance in regional anaesthesia. Br J Anaesth. 2005;94(1):7–17.

    Article  CAS  Google Scholar 

  7. Niazi AU, Haldipur N, Prasad AG, Chan VW. Ultrasound-guided regional anesthesia performance in the early learning period: effect of simulation training. Reg Anesth Pain Med. 2012;37(1):51–4.

    Article  Google Scholar 

  8. Udani AD, Macario A, Nandagopal K, Tanaka MA, Tanaka PP. Simulation-based mastery learning with deliberate practice improves clinical performance in spinal anesthesia. Anesthesiol Res Pract. 2014;2014:659160.

    PubMed  PubMed Central  Google Scholar 

  9. Baranauskas MB, Margarido CB, Panossian C, Silva ED. Simulation of ultrasound-guided peripheral nerve block: learning curve of CET-SMA/HSL anesthesiology residents. Rev Bras Anestesiol. 2008;58(2):106–11.

    Article  Google Scholar 

  10. Kim SC, Hauser S, Staniek A, Weber S. Learning curve of medical students in ultrasound-guided simulated nerve block. J Anesth. 2014;28(1):76–80.

    Article  Google Scholar 

  11. Friedman Z, Siddiqui N, Katznelson R, Devito I, Bould MD, Naik V. Clinical impact of epidural anesthesia simulation on short- and long-term learning curve: high- versus low-fidelity model training. Reg Anesth Pain Med. 2009;34(3):229–32.

    Article  Google Scholar 

  12. Liu Y, Glass NL, Glover CD, Power RW, Watcha MF. Comparison of the development of performance skills in ultrasound-guided regional anesthesia simulations with different phantom models. Simul Healthc. 2013;8(6):368–75.

    Article  Google Scholar 

  13. Liu Y, Glass NL, Power RW. Technical communication: new teaching model for practicing ultrasound-guided regional anesthesia techniques: no perishable food products! Anesth Analg. 2010;110(4):1233–5.

    PubMed  Google Scholar 

  14. Rosenberg AD, Popovic J, Albert DB, Altman RA, Marshall MH, Sommer RM, et al. Three partial-task simulators for teaching ultrasound-guided regional anesthesia. Reg Anesth Pain Med. 2012;37(1):106–10.

    Article  Google Scholar 

  15. Kessler J, Moriggl B, Grau T. Ultrasound-guided regional anesthesia: learning with an optimized cadaver model. Surg Radiol Anat. 2014;36(4):383–92.

    Article  Google Scholar 

  16. Hocking G, Hebard S, Mitchell CH. A review of the benefits and pitfalls of phantoms in ultrasound-guided regional anesthesia. Reg Anesth Pain Med. 2011;36(2):162–70.

    Article  Google Scholar 

  17. Grottke O, Ntouba A, Ullrich S, Liao W, Fried E, Prescher A, et al. Virtual reality-based simulator for training in regional anaesthesia. Br J Anaesth. 2009;103(4):594–600.

    Article  CAS  Google Scholar 

  18. Lim MW, Burt G, Rutter SV. Use of three-dimensional animation for regional anaesthesia teaching: application to interscalene brachial plexus blockade. Br J Anaesth. 2005;94(3):372–7.

    Article  CAS  Google Scholar 

  19. Morse J, Terrasini N, Wehbe M, Philippona C, Zaouter C, Cyr S, et al. Comparison of success rates, learning curves, and inter-subject performance variability of robot-assisted and manual ultrasound-guided nerve block needle guidance in simulation. Br J Anaesth. 2014;112(6):1092–7.

    Article  CAS  Google Scholar 

  20. Mulroy MF. Systemic toxicity and cardiotoxicity from local anesthetics: incidence and preventive measures. Reg Anesth Pain Med. 2002;27(6):556–61.

    Article  CAS  Google Scholar 

  21. Woodworth GE, Chen EM, Horn JL, Aziz MF. Efficacy of computer-based video and simulation in ultrasound-guided regional anesthesia training. J Clin Anesth. 2014;26(3):212–21.

    Article  Google Scholar 

  22. Gasko J, Johnson A, Sherner J, Craig J, Gegel B, Burgert J, et al. Effects of using simulation versus CD-ROM in the performance of ultrasound-guided regional anesthesia. AANA J. 2012;80(4):S56–S9.

    PubMed  Google Scholar 

  23. Udani AD, Kim TE, Howard SK, Mariano ER. Simulation in teaching regional anesthesia: current perspectives. Local Reg Anesth. 2015;8:33–43.

    PubMed  PubMed Central  Google Scholar 

  24. Garcia-Tomas V, Schwengel D, Ouanes JP, Hall S, Hanna MN. Improved residents' knowledge after an advanced regional anesthesia education program. MEJ Anesth. 2014;22(4):419–27.

    Google Scholar 

  25. Sites BD, Spence BC, Gallagher JD, Wiley CW, Bertrand ML, Blike GT. Characterizing novice behavior associated with learning ultrasound-guided peripheral regional anesthesia. Reg Anesth Pain Med. 2007;32(2):107–15.

    Article  Google Scholar 

  26. Berkenstadt H, Ziv A, Gafni N, Sidi A. Incorporating simulation-based objective structured clinical examination into the Israeli National Board Examination in Anesthesiology. Anesth Analg. 2006;102(3):853–8.

    Article  Google Scholar 

  27. Wen LY, Gaba DM, Udani AD. Summative assessments using simulation requires safeguards. Anesth Analg. 2017;124(1):369.

    Article  Google Scholar 

  28. Bretholz A, Doan Q, Cheng A, Lauder G. A presurvey and postsurvey of a web- and simulation-based course of ultrasound-guided nerve blocks for pediatric emergency medicine. Pediatr Emerg Care. 2012;28(6):506–9.

    Article  Google Scholar 

  29. Brenner GJ, Newmark JL, Raemer D. Curriculum and cases for pain medicine crisis resource management education. Anesth Analg. 2013;116(1):107–10.

    Article  Google Scholar 

  30. Whittaker S, Lethbridge G, Kim C, Keon Cohen Z, Ng I. An ultrasound needle insertion guide in a porcine phantom model. Anaesthesia. 2013;68(8):826–9.

    Article  CAS  Google Scholar 

  31. Gupta RK, Lane J, Allen B, Shi Y, Schildcrout JS. Improving needle visualization by novice residents during an in-plane ultrasound nerve block simulation using an in-plane multiangle needle guide. Pain Med. 2013;14:1600–7.

    Article  Google Scholar 

  32. Cook TM, Payne S, Skryabina E, Hurford D, Clow E, Georgiou A. A simulation-based evaluation of two proposed alternatives to Luer devices for use in neuraxial anaesthesia. Anaesthesia. 2010;65(11):1069–79.

    Article  CAS  Google Scholar 

  33. Kilicaslan A, Topal A, Tavlan A, Erol A, Otelcioglu S. Differences in tip visibility and nerve block parameters between two echogenic needles during a simulation study with inexperienced anesthesia trainees. J Anesth. 2014;28(3):460–2.

    Article  Google Scholar 

  34. Mariano ER, Yun RD, Kim TE, Carvalho B. Application of echogenic technology for catheters used in ultrasound-guided continuous peripheral nerve blocks. J Ultrasound Med. 2014;33(5):905–11.

    Article  Google Scholar 

  35. Johns J, Harrison TK, Steffel L, Howard SK, Kim TE, Kou A, et al. A pilot in vitro evaluation of the “air test” for perineural catheter tip localization by a novice regional anesthesiologist. J Ultrasound Med. 2014;33(12):2197–200.

    Article  Google Scholar 

  36. Kan JM, Harrison TK, Kim TE, Howard SK, Kou A, Mariano ER. An in vitro study to evaluate the utility of the “air test” to infer perineural catheter tip location. J Ultrasound Med. 2013;32:529–33.

    Article  Google Scholar 

  37. Johnson B, Herring A, Stone M, Nagdev A. Performance accuracy of hand-on-needle versus hand-on-syringe technique for ultrasound-guided regional anesthesia simulation for emergency medicine residents. West J Emerg Med. 2014;15(6):641–6.

    Article  Google Scholar 

  38. Neal JM, Hsiung RL, Mulroy MF, Halpern BB, Dragnich AD, Slee AE. ASRA checklist improves trainee performance during a simulated episode of local anesthetic systemic toxicity. Reg Anesth Pain Med. 2012;37(1):8–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda H. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A.H., Udani, A.D. (2020). Simulation in Regional Anesthesia. In: Mahoney, B., Minehart, R., Pian-Smith, M. (eds) Comprehensive Healthcare Simulation: Anesthesiology . Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-030-26849-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26849-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26848-0

  • Online ISBN: 978-3-030-26849-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics