Skip to main content

Machine Learning for Acquired Brain Damage Treatment

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11613))

  • 1783 Accesses

Abstract

This article presents an alternative rehabilitation system based on a visual feedback system for people suffering from cerebral palsy disorder. The proposed feedback system handles textures and movements in a 3D graphic environment, specially designed to develop skills that improve patient performance. The interface is developed in the Unity3D software, identifying patterns of the body is done through motion Kinect and validation of the correct execution of the exercises sensor is carried out, using the technique of machine learning for training rehabilitation system. The experimental results show the efficiency of the system that generates an improvement in the motor abilities of the upper and lower extremities of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, SH., Kim, HG., Choi, H.J.: Rehabilitation posture correction using deep neural network. In: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp) (2017)

    Google Scholar 

  2. Ongvisatepaiboon, K., Chan, J., Vanijja, V.: Smartphone-based tele-rehabilitation system for frozen shoulder using a machine learning approach. In: 2015 IEEE Symposium Series on Computational Intelligence (2015)

    Google Scholar 

  3. Frazzitta, G., Morelli, M., Bertotti, G., Felicetti, G., Pezzoli, G., Maestri, R.: Intensive rehabilitation treatment in parkinsonian patients with dyskinesias: a preliminary study with 6-month followup. Parkinsons Dis. 2012 (2012)

    Google Scholar 

  4. Patti, F., et al.: Effects of a short outpatient rehabilitation treatment on disability of multiple sclerosis patients. J. Neurol. 250(7), 861–866 (2003)

    Article  Google Scholar 

  5. Freeman, J., Langdon, D., Hobart, J., Thompson, A.: The impact of inpatient rehabilitation on progressive multiple sclerosis. Ann. Neurol. 42(2), 236–244 (1997)

    Article  Google Scholar 

  6. Henderson, A., Korner-Bitensky, N., Levin, M.: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14(2), 52–61 (2014)

    Article  Google Scholar 

  7. Deep, A., Jaswal, R.: Role of management & virtual space for the rehabilitation of children affected with cerebral palsy: a review. In: 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC) (2017)

    Google Scholar 

  8. Bates, M.: From brain to body: new technologies improve paralyzed patients? Quality of life. IEEE Pulse 8(5), 22–26 (2017)

    Article  Google Scholar 

  9. Malik, N.A., Yussof, H., Hanapiah, F.: Potential use of social assistive robot based rehabilitation for children with cerebral palsy. In: 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA) (2016)

    Google Scholar 

  10. Bayon, C., et al.: Pilot study of a novel robotic platform for gait rehabilitation in children with cerebral palsy. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) (2016)

    Google Scholar 

  11. Lu, R., Wu, Y.: Application of brain-computer interface system in stroke patients. Rehabil. Med. 26(5), 59 (2016)

    Article  Google Scholar 

  12. Camara Machado, F., Antunes, P., Souza, J., Santos, A., Levandowski, D., Oliveira, A.: Motor improvement using motion sensing game devices for cerebral palsy rehabilitation. J. Motor Behav. 49(3), 273–280 (2016)

    Article  Google Scholar 

  13. Chang, Y., Han, W., Tsai, Y.: A kinect-based upper limb rehabilitation system to assist people with cerebral palsy. Res. Dev. Disabil. 34(11), 3654–3659 (2013)

    Article  Google Scholar 

  14. Pourazar, M., Mirakhori, F., Hemayattalab, R., Bagherzadeh, F.: Use of virtual reality intervention to improve reaction time in children with cerebral palsy: a randomized controlled trial. Dev. Neurorehabilitation 21(8), 515–520 (2018)

    Article  Google Scholar 

  15. Jaume-i-Capo, A., Martinez-Bueso, P., Moya-Alcover, B., Varona, J.: Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 419–427 (2014)

    Article  Google Scholar 

  16. Nithya, V., Arun, C.: Brain controlled wearable robotic glove for cerebral palsy patients. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT) (2017)

    Google Scholar 

  17. Heravi, A., Hodtani, G.A.: A new correntropy-based conjugate gradient backpropagation algorithm for improving training in neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2018). https://doi.org/10.1109/tnnls.2018.2827778

    Article  Google Scholar 

  18. Pforte, L.: Extensions of simple modules for SL3(2f) and SU3(2f). Commun. Algebra 45(10), 4210–4221 (2016)

    Article  MathSciNet  Google Scholar 

  19. Yang, J., Zhao, H., Chen, X.: Genetic algorithm optimized training for neural network spectrum 348 prediction. In: Proceedings of the IEEE 2nd International Conference on Computer and Communications (ICCC), vol. 2, no 349 1, pp. 2949–2954 (2016)

    Google Scholar 

  20. Sauro, J., Lewis, J.R.: When designing usability questionnaires, does it hurt to be positive? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2215–2224. ACM, May 2011

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaritza P. Erazo , Christian P. Chasi , María A. Latta or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erazo, Y.P., Chasi, C.P., Latta, M.A., Andaluz, V.H. (2019). Machine Learning for Acquired Brain Damage Treatment. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11613. Springer, Cham. https://doi.org/10.1007/978-3-030-25965-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25965-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25964-8

  • Online ISBN: 978-3-030-25965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics