Skip to main content

Image Analysis for Ophthalmology: Segmentation and Quantification of Retinal Vascular Systems

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The retina is directly connected to the central nervous system and the vascular circulation, which uniquely enables three-dimensional retinal tissue structures and blood flow dynamics to be imaged and visualized from the exterior using non-invasive imaging modalities. Rapid advances in the types of diagnostic imaging modalities, combined with image processing, computer vision, artificial intelligence, and machine learning algorithms for quantitative image analytics are opening up a host of new possibilities for early diagnosis and treatment of a broad range of eye and systemic diseases with clinical impact. Incorporating patient-specific imaging to estimate geometric structures of vessel morphology and boundary conditions as input to the mathematical and computational fluid-dynamics modeling frameworks described in earlier chapters will enable new ways to predict treatment outcomes and model physiological effects at the systemic level. This chapter describes a set of widely used retinal imaging modalities, including fundoscopy, fluorescein angiography (FA), and optical coherence tomography (OCT), along with emerging modalities to measure retinal blood flow dynamics like optical coherence tomography angiography (OCTA) and laser speckle flowgraphy (LSFG). We use vessel segmentation and quantification as a prototypical ophthalmology image analysis pipeline that can be applied across imaging modalities, to describe processing techniques for measuring geometrical vascular structures. Current challenges and future opportunities especially in using artificial intelligence and deep learning architectures for patient optimized precision medicine and clinical efficacy are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. TW Secomb and AR Pries. The microcirculation: Physiology at the mesoscale. Journal of Physiology, 589:1047–1052, 2011.

    Article  Google Scholar 

  2. JC Arciero, P Causin, and F Malgaroli. Mathematical methods for modeling the microcirculation. AIM Biophysics, 4(3):362–399, 2017.

    Article  Google Scholar 

  3. P Causin, G Guidoboni, F Malgaroli, R Sacco, and A Harris. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: Multiscale mathematical modeling and numerical simulation. Biomechanics and Modeling in Mechanobiology, 15(3):525–542, 2016.

    Article  Google Scholar 

  4. TW Secomb. Blood flow in the microcirculation. Annual Reviews of Fluid Mechanics, 49:443–461, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  5. JH Thrall, X Li, Q Li, C Cruz, S Do, K Dreyer, and J Brink. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. Journal of the American College of Radiology, 15(3):504–508, 2018.

    Article  Google Scholar 

  6. P Teikari, RP Najjar, L Schmetterer, and D Milea. Embedded deep learning in ophthalmology: Making ophthalmic imaging smarter. Therapeutic Advances in Ophthalmology, 11, 2019.

    Article  Google Scholar 

  7. SM Heringa, WH Bouvy, E Van Den Berg, AC Moll, LJ Kappelle, and GJ Biessels. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: A systematic review. Journal of Cerebral Blood Flow & Metabolism, 33(7):983–995, 2013.

    Article  Google Scholar 

  8. L Arnould, C Binquet, C Guenancia, S Alassane, R Kawasaki, V Daien, C Tzourio, Y Kawasaki, A Bourredjem, A Bron, and C. Creuzot-Garcher. Association between the retinal vascular network with singapore “i” vessel assessment (siva) software, cardiovascular history and risk factors in the elderly: The montrachet study, population-based study. PloS One, 13(4):e0194694, 2018.

    Article  Google Scholar 

  9. MA Mazurowski, M Buda, A Saha, and MR Bashir. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on mri. Journal of Magnetic Resonance Imaging, 49(4):939–954, 2019.

    Article  Google Scholar 

  10. E Rahimy. Deep learning applications in ophthalmology. Current Opinion in Ophthalmology, 29(3):254–260, 2018.

    Article  Google Scholar 

  11. W Lu, Y Tong, Y Yu, Y Xing, C Chen, and Y Shen. Applications of artificial intelligence in ophthalmology: General overview. Journal of Ophthalmology, 11(9), 2018.

    Google Scholar 

  12. R Kappor, SP Walters, and LA Al-Aswad. The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 64:233–240, 2019.

    Article  Google Scholar 

  13. DSW Ting, LR Pasquale, L Peng, JP Campbell, AY Lee, R Raman, GSW Tan, L Schmetterer, PA Keane, and TY Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019.

    Article  Google Scholar 

  14. MD Abramoff, MK Garvin, and M Sonka. Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3:169–208, 2010.

    Article  Google Scholar 

  15. TY Wong and NM Bressler. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. Journal of the American Medical Association, 316(22):2366–2367, 2016.

    Article  Google Scholar 

  16. H Mir, H Al-Nashash, and UR Acharya. Quantification of diabetic retinopathy using digital fundus images. In EYK Ng, UR Acharya, JS Suri, and A Campilho, editors, Image Analysis and Modeling in Ophthalmology, pages 161–169. CRC Press, 2014.

    Google Scholar 

  17. MRK Mookiah, UR Acharya, CK Chua, CM Lim, EYK Ng, and A Laude. Computer-aided diagnosis of diabetic retinopathy: A review. Computers in Biology and Medicine, 43(12):2136–2155, 2013.

    Article  Google Scholar 

  18. MRK Mookiah, UR Acharya, C Chakraborty, LC Min, EYK Ng, and JS Suri. Automated glaucoma identification using retinal fundus images: A hybrid texture feature extraction paradigm. In EYK Ng, UR Acharya, JS Suri, and A Campilho, editors, Image Analysis and Modeling in Ophthalmology, pages 9–22. CRC Press, 2014.

    Google Scholar 

  19. N Thakur and M Juneja. Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42:162–189, 2018.

    Article  Google Scholar 

  20. JC Tovey and DP Hainsworth. Artificial vision: Hope for the new millennium. Missouri Medicine, 112(1):76–84, 2015.

    Google Scholar 

  21. H Schneiderman. The fundoscopic examination. In Clinical Methods: The History, Physical, and Laboratory Examinations, chapter 117. Boston: Butterworths, 3rd edition, 1990. Available from: https://www.ncbi.nlm.nih.gov/books/NBK221/.

  22. H Kolb. Simple anatomy of the retina. In Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center, 2005. Available from http://www.ncbi.nlm.nih.gov/books/NBK11533/ PubMed PMID: 21413391.

  23. TJ MacGillivray, E Trucco, JR Cameron, B Dhillon, JG Houston, and EJ van Beek. Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. The British Journal of Radiology, 87(1040), 2014.

    Article  Google Scholar 

  24. A Newman, N Andrew, and R Casson. Review of the association between retinal microvascular characteristics and eye disease. Clinical & Experimental Ophthalmology, 46(5):531–552, 2018.

    Article  Google Scholar 

  25. V Gulshan, L Peng, M Coram, MC Stumpe, Derek Wu, A Narayanaswamy, S Venugopalan, K Widner, T Madams, J Cuadros, R Kim, R Raman, PC Nelson, JL Mega, and DR Webster. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical Association, 316(22):2402–2410, 2016.

    Article  Google Scholar 

  26. HK Banda, GK Shah, and KJ Blinder. Applications of fundus autofluorescence and widefield angiography in clinical practice. Canadian Journal of Ophthalmology, 2018.

    Google Scholar 

  27. RR Lim, T Vaidya, SG Gadde, NK Yadav, S Sethu, DP Hainsworth, RR Mohan, A Ghosh, and SS Chaurasia. Correlation between systemic s100a8 and s100a9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13:1581–1589, 2019.

    Article  Google Scholar 

  28. S Bearelly and SW Cousins. Fundus autofluorescence imaging in age-related macular degeneration and geographic atrophy. In Retinal Degenerative Diseases, pages 395–402. Springer, 2010.

    Google Scholar 

  29. R Bernardes, P Serranho, and C Lobo. Digital ocular fundus imaging: a review. Ophthalmologica, 226(4):161–181, 2011.

    Article  Google Scholar 

  30. S Guigui, T Lifshitz, and J Levy. Screening for diabetic retinopathy: Review of current methods. Hospital Practice, 40(2):64–72, 2012.

    Article  Google Scholar 

  31. N Panwar, P Huang, J Lee, PA Keane, TS Chuan, A Richhariya, S Teoh, TH Lim, and R Agrawal. Fundus photography in the 21st century - a review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health, 22(3), 2016.

    Article  Google Scholar 

  32. GP Leese, DM Broadbent, SP Harding, and JP Vora. Detection of sight-threatening diabetic eye disease. Diabetic Medicine, 13(10), 1996.

    Article  Google Scholar 

  33. PFJ Hoyng, AH Rulo, EL Greve, M Astin, and M Gjötterberg. Fluorescein angiographic evaluation of the effect of latanoprost treatment on blood-retinal barrier integrity: A review of studies conducted on pseudophakic glaucoma patients and on phakic and aphakic monkeys. Survey of Ophthalmology, 41:S83–S88, 1997.

    Article  Google Scholar 

  34. R Brancato and G Trabucchi. Fluorescein and indocyanine green angiography in vascular chorioretinal diseases. In Seminars in Ophthalmology, volume 13, pages 189–198, 1998.

    Article  Google Scholar 

  35. A Ly, L Nivison-Smith, N Assaad, and M Kalloniatis. Fundus autofluorescence in age-related macular degeneration. Optometry and Vision Science, 94(2), 2017.

    Article  Google Scholar 

  36. A Wessing. Diabetic retinopathy: update on diagnosis and treatment. Nephrology, Dialysis, Transplantation: European Dialysis and Transplant Association-European Renal Association, 12(9), 1997.

    Article  Google Scholar 

  37. MA Hochman, CM Seery, and MA Zarbin. Pathophysiology and management of subretinal hemorrhage. Survey of Ophthalmology, 42(3):195–213, 1997.

    Article  Google Scholar 

  38. KA Klima. Focus on fluorescein angiography. Insight, 31(2), 2006.

    Google Scholar 

  39. D Schmidt. The mystery of cotton-wool spots - a review of recent and historical descriptions. European Journal of Medical Research, 13(6), 2008.

    Google Scholar 

  40. JG Fujimoto, C Pitris, SA Boppart, and ME Brezinski. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2(1–2):9–25, 2000.

    Article  Google Scholar 

  41. ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman. Optical coherence tomography: History, current status, and laboratory work. Investigative Ophthalmology & Visual Science, 52(5):2425–2436, 2011.

    Article  Google Scholar 

  42. ML Gabriele, G Wollstein, H Ishikawa, J Xu, J Kim, L Kagemann, LS Folio, and JS Schuman. Three dimensional optical coherence tomography imaging: Advantages and advances. Progress in Retinal and Eye Research, 29(6):556–579, 2010.

    Article  Google Scholar 

  43. T Oshitari and Y Mitamura. Optical coherence tomography for complete management of patients with diabetic retinopathy. Current Diabetes Reviews, 6(4):207–214, 2010.

    Article  Google Scholar 

  44. W Geitzenauer, CK Hitzenberger, and UM Schmidt-Erfurth. Retinal optical coherence tomography: Past, present and future perspectives. British Journal of Ophthalmology, 95(2):171–177, 2011.

    Article  Google Scholar 

  45. SY Cohen, A Miere, S Nghiem-Buffet, F Fajnkuchen, EH Souied, and S Mrejen. Clinical applications of optical coherence tomography angiography: What we have learnt in the first 3 years. European Journal of Ophthalmology, 28(5):491–502, 2018.

    Article  Google Scholar 

  46. H Jiao, LJ Hill, LE Downie, and HR Chinnery. Anterior segment optical coherence tomography: Its application in clinical practice and experimental models of disease. Clinical and Experimental Optometry, 2018.

    Google Scholar 

  47. DE Baskin. Optical coherence tomography in diabetic macular edema. Current Opinion in Ophthalmology, 21(3):172–177, 2010.

    Article  Google Scholar 

  48. CE Mendoza-Santiesteban, A Gonzalez-Garcia, TR Hedges, Y Hernandez-Silva, Y Columbie-Garbey, L Fernández-Cherkasova, R Santiesteban-Freixas, and SV Casali. Optical coherence tomography for neuro-ophthalmologic diagnoses. Seminars in Ophthalmology, 25(4), 2010.

    Article  Google Scholar 

  49. L Van Melkebeke, J Barbosa-Breda, M Huygens, and I Stalmans. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Research, 60(3):139–151, 2018.

    Article  Google Scholar 

  50. KD Bojikian, PP Chen, and JC Wen. Optical coherence tomography angiography in glaucoma. Current Opinion in Ophthalmology, 30(2):110–116, 2019.

    Article  Google Scholar 

  51. A. F. Hasler, K. Palaniappan, M. Manyin, and J. Dodge. A high performance interactive image spreadsheet (iiss). Computers in Physics, 8(4):325–342, 1994.

    Article  Google Scholar 

  52. K. Palaniappan, A. Hasler, J. Fraser, and M. Manyin. Network-based visualization using the distributed image spreadsheet (diss). In 17th Int. AMS Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography and Hydrology, pages 399–403, 2001.

    Google Scholar 

  53. C. Lamirel, N. Newman, and V. Biousse. The use of optical coherence tomography in neurology. Rev Neurol Dis, 6(4):E105–E120, 2009.

    Google Scholar 

  54. AP Dhawan, B D’Alessandro, and X Fu. Optical imaging modalities for biomedical applications. IEEE Reviews in Biomedical Engineering, 3:69–92, 2010.

    Article  Google Scholar 

  55. R Singh, SLCY Mei, W Tam, D Raju, and A Ruszkiewicz. Real-time histology with the endocytoscope. World Journal of Gastroenterology: WJG, 16(40), 2010.

    Article  Google Scholar 

  56. J Doustar, T Torbati, KL Black, Y Koronyo, and M Koronyo-Hamaoui. Optical coherence tomography in alzheimer’s disease and other neurodegenerative diseases. Frontiers in Neurology, 8:701, 2017.

    Article  Google Scholar 

  57. CJ Chen, JS Kumar, SH Chen, D Ding, TJ Buell, S Sur, N Ironside, E Luther, M Ragosta, MS Park, MY Kalani, KC Liu, and RM Starke. Optical coherence tomography: Future applications in cerebrovascular imaging. Stroke, 49(4):1044–1050, 2018.

    Article  Google Scholar 

  58. L Wang, O Murphy, NG Caldito, PA Calabresi, and S Saidha. Emerging applications of optical coherence tomography angiography (OCTA) in neurological research. Eye and Vision, 2018.

    Google Scholar 

  59. AH Kashani, CL Chen, JK Gahm, F Zheng, GM Richter, PJ Rosenfeld, Y Shi, and RK Wang. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research, 60:66–100, 2017.

    Article  Google Scholar 

  60. SS Gao, Y Jia, et al. Optical coherence tomography angiography. Investigative Ophthalmology and Visual Science, 57:OCT27–OCT36, 2016.

    Article  Google Scholar 

  61. RF Spaide, JG Fujimoto, NK Waheed, SR Sadda, and G Staurenghi. Optical coherence tomography angiography. Progress in Retinal and Eye Research, 64:1–55, 2018.

    Article  Google Scholar 

  62. T Shiba, M Takahashi, T Matsumoto, and Y Hori. Relationship between metabolic syndrome and ocular microcirculation shown by laser speckle flowgraphy in a hospital setting devoted to sleep apnea syndrome diagnostics. Journal of Diabetes Research, 2017.

    Google Scholar 

  63. X Wei, PK Balne, KE Meissner, VA Barathi, L Schmetterer, and R Agrawal. Assessment of flow dynamics in retinal and choroidal microcirculation. Survey of Ophthalmology, 63(5):646–664, 2018.

    Article  Google Scholar 

  64. S Kikuchi, K Miyake, Y Tada, D Uchida, A Koya, Y Saito, T Ohura, and N Azuma. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization. Vascular, 2018.

    Google Scholar 

  65. SS Chaurasia, RR Lim, BH Parikh, YS Wey, BB Tun, TY Wong, CD Luu, R Agrawal, A Ghosh, A Mortellaro, E Rackoczy, RR Mohan, and VA Barathi. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy. Nature Scientific Reports, 8(1), 2018.

    Google Scholar 

  66. T Shiba, M Takahashi, T Matsumoto, and Y Hori. Pulse waveform analysis in ocular microcirculation by laser speckle flowgraphy in patients with left ventricular systolic and diastolic dysfunction. Journal of Vascular Research, 55(6):329–337, 2018.

    Article  Google Scholar 

  67. H Rabbani, MJ Allingham, PS Mettu, SW Cousins, and S Farsiu. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Investigative Ophthalmology & Visual Science, 56(3):1482–1492, 2015.

    Article  Google Scholar 

  68. S Farsiu, SJ Chiu, RV O’Connell, FA Folgar, E Yuan, JA Izatt, and CA Toth. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1):162–172, 2014.

    Article  Google Scholar 

  69. DS Kermany, M Goldbaum, W Cai, CC Valentim, H Liang, SL Baxter, A McKeown, G Yang, X Wu, F Yan, and J Dong. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.

    Article  Google Scholar 

  70. J Staal, MD Abràmoff, M Niemeijer, MA Viergever, and B van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4):501–509, 2004.

    Article  Google Scholar 

  71. STARE (Structured Analysis of the Retina). http://cecas.clemson.edu/~ahoover/stare/. Accessed: 2018-07-01.

  72. AD Hoover, V Kouznetsova, and M Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3):203–210, 2000.

    Article  Google Scholar 

  73. ARIA (Automated Retinal Image Analysis). https://eyecharity.weebly.com/aria_online.html. Accessed: 2018-07-01.

  74. Y Zheng, MHA Hijazi, and F Coenen. Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach. Investigative Ophthalmology & Visual Science, 53(13):8310–8318, 2012.

    Article  Google Scholar 

  75. DJJ Farnell, FN Hatfield, P Knox, M Reakes, S Spencer, D Parry, and SP Harding. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. Journal of the Franklin Institute, 345(7):748–765, 2008.

    Article  MATH  Google Scholar 

  76. IMAGERET. https://www.it.lut.fi/project/imageret/. Accessed: 2018-07-01.

  77. T Kauppi, V Kalesnykiene, JK Kamarainen, L Lensu, I Sorri, H Uusitalo, H Kälviäinen, and J Pietilä. DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms. Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, 73, 2006.

    Google Scholar 

  78. G Quellec, M Lamard, PM Josselin, G Cazuguel, B Cochener, and C Roux. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transactions on Medical Imaging, 27(9):1230–41, 2008.

    Article  Google Scholar 

  79. E Decencière, X Zhang, G Cazuguel, B Lay, B Cochener, C Trone, P Gain, R Ordonez, P Massin, A Erginay, et al. Feedback on a publicly distributed image database: The Messidor database. Image Analysis & Stereology, 33(3):231–234, 2014.

    Article  MATH  Google Scholar 

  80. B Al-Diri, A Hunter, D Steel, M Habib, T Hudaib, and S Berry. A reference data set for retinal vessel profiles. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2262–2265, 2008.

    Google Scholar 

  81. VICAVR. http://www.varpa.es/research/ophtalmology.html#databases. Accessed: 2018-10-12.

  82. M Ortega, N Barreira, J Novo, MG Penedo, A Pose-Reino, and F Gómez-Ulla. Sirius: a web-based system for retinal image analysis. International Journal of Medical Informatics, 79(10):722–732, 2010.

    Article  Google Scholar 

  83. High-resolution fundus image database (hrf). https://www5.cs.fau.de/research/data/fundus-images/. Accessed: 2018-10-12.

  84. A Budai, R Bock, A Maier, J Hornegger, and G Michelson. Robust vessel segmentation in fundus images. International Journal of Biomedical Imaging, 2013.

    Google Scholar 

  85. DR HAGIS: Diabetic Retinopathy, Hypertension, Age-related macular degeneration and Glacuoma ImageS. https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/. Accessed: 2018-10-12.

  86. S Holm, G Russell, V Nourrit, and N McLoughlin. DR HAGIS – a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging, 4(1):014503, 2017.

    Article  Google Scholar 

  87. G Quellec, K Charrière, Y Boudi, B Cochener, and M Lamard. Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 39:178–193, 2017.

    Article  Google Scholar 

  88. N Patton, TM Aslam, T MacGillivray, IJ Deary, B Dhillon, RH Eikelboom, K Yogesan, and IJ Constable. Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research, 25(1):99–127, 2006.

    Article  Google Scholar 

  89. MM Fraz, P Remagnino, A Hoppe, B Uyyanonvara, AR Rudnicka, CG Owen, and SA Barman. Blood vessel segmentation methodologies in retinal images–A survey. Computer Methods and Programs in Biomedicine, 108(1):407–433, 2012.

    Article  Google Scholar 

  90. M Zhou, K Jin, S Wang, J Ye, and D Qian. Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 65(3):521–527, 2018.

    Article  Google Scholar 

  91. AF Frangi, WJ Niessen, KL Vincken, and MA Viergever. Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 1496:130–137, 1998.

    Google Scholar 

  92. PTH Truc, MAU Khan, YK Lee, S Lee, and TS Kim. Vessel enhancement filter using directional filter bank. Computer Vision and Image Understanding, 113(1):101–112, 2009.

    Article  Google Scholar 

  93. F Bunyak, K Palaniappan, O Glinskii, V Glinskii, V Glinsky, and V Huxley. Epifluorescence-based quantitative microvasculature remodeling using geodesic level-sets and shape-based evolution. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3134–3137, 2008.

    Google Scholar 

  94. M Liao, YQ Zhao, XH Wang, and PS Dai. Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Technology, 58:56–62, 2014.

    Article  Google Scholar 

  95. C Canero and P Radeva. Vesselness enhancement diffusion. Pattern Recognition Letters, 24(16):3141–3151, 2003.

    Article  Google Scholar 

  96. VBS Prasath, R Pelapur, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Multiscale tensor anisotropic filtering of fluorescence microscopy for denoising microvasculature. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 540–543, 2015.

    Google Scholar 

  97. R Pelapur, VBS Prasath, F Bunyak, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Multi-focus image fusion using epifluorescence microscopy for robust vascular segmentation. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4735–4738, 2014.

    Google Scholar 

  98. YM Kassim, VBS Prasath, R Pelapur, OV Glinskii, RJ Maude, VV Glinsky, VH Huxley, and K Palaniappan. Random forests for dura mater microvasculature segmentation using epifluorescence images. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2901–2904, 2016.

    Google Scholar 

  99. YM Kassim and K Palaniappan. Extracting retinal vascular networks using deep learning architecture. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1170–1174, 2017.

    Google Scholar 

  100. YM Kassim, VBS Prasath, OV Glinskii, VV Glinsky, VH Huxley, and K Palaniappan. Microvasculature segmentation of arterioles using deep CNN. In IEEE International Conference on Image Processing (ICIP), pages 580–584, 2017.

    Google Scholar 

  101. M Niemeijer, J Staal, B van Ginneken, M Loog, and MD Abramoff. Comparative study of retinal vessel segmentation methods on a new publicly available database. In Medical Imaging: Image Processing, volume 5370, pages 648–657. International Society for Optics and Photonics, 2004.

    Google Scholar 

  102. D Eberly, R Gardner, B Morse, S Pizer, and C Scharlach. Ridges for image analysis. Journal of Mathematical Imaging and Vision, 4(4):353–373, 1994.

    Article  MATH  Google Scholar 

  103. AM Lopez, F Lumbreras, J Serrat, and JJ Villanueva. Evaluation of methods for ridge and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):327–335, 1999.

    Article  Google Scholar 

  104. JBA Maintz, PA van den Elsen, and MA Viergever. Evaluation of ridge seeking operators for multimodality medical image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):353–365, 1996.

    Article  Google Scholar 

  105. T Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):77–116, 1998.

    Google Scholar 

  106. Y Sato, S Nakajima, H Atsumi, T Koller, G Gerig, S Yoshida, and R Kikinis. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2):143–168, 1998.

    Article  Google Scholar 

  107. C Lorenz, IC Carlsen, TM Buzug, C Fassnacht, and J Weese. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In Proceedings of CVRMed-MRCAS, pages 233–242, 1997.

    Google Scholar 

  108. K Krissian, G Malandain, N Ayache, R Vaillant, and Y Trousset. Model-based detection of tubular structures in 3D images. Computer Vision Image Understanding, 80(2):130–171, 2000.

    Article  MATH  Google Scholar 

  109. J Zhou, S Chang, D Metaxas, and L Axel. Vessel boundary extraction using ridge scan-conversion deformable model. In IEEE International Symposium on Biomedical Imaging (ISBI), pages 189– 192, Apr. 2006.

    Google Scholar 

  110. I. N. Bronshtein and K. A. Semendyayev. Handbook of mathematics (3rd ed.), chapter Chapter 4.3. Springer-Verlag, London, UK, 1997.

    Google Scholar 

  111. R Annunziata, A Garzelli, L Ballerini, A Mecocci, and E Trucco. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 20(4):1129–1138, 2016.

    Article  Google Scholar 

  112. K BahadarKhan, AA Khaliq, and M Shahid. A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based otsu thresholding. PloS One, 11(7):e0158996, 2016.

    Article  Google Scholar 

  113. S Chaudhuri, S Chatterjee, N Katz, M Nelson, and M Goldbaum. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 8(3):263–269, 1989.

    Article  Google Scholar 

  114. M Sofka and CV Stewart. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Transactions on Medical Imaging, 25(12):1531–1546, 2006.

    Article  Google Scholar 

  115. WS Oliveira, JV Teixeira, TI Ren, GDC Cavalcanti, and J Sijbers. Unsupervised retinal vessel segmentation using combined filters. PloS One, 11(2):e0149943, 2016.

    Article  Google Scholar 

  116. L Gang, O Chutatape, and SM Krishnan. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Transactions on Biomedical Engineering, 49(2):168–172, 2002.

    Article  Google Scholar 

  117. JVB Soares, JJG Leandro, RM Cesar, HF Jelinek, and MJ Cree. Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9):1214–1222, 2006.

    Article  Google Scholar 

  118. EM Sigurdhsson, S Valero, JA Benediktsson, J Chanussot, H Talbot, and E Stefansson. Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recognition Letters, 47:164–171, 2014.

    Article  Google Scholar 

  119. L Najman and H Talbot. Mathematical Morphology: From Theory to Applications. John Wiley & Sons, 2013.

    Book  MATH  Google Scholar 

  120. F Zana and JC Klein. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing, 10(7):1010–1019, 2001.

    Article  MATH  Google Scholar 

  121. AM Mendonca and A Campilho. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging, 25(9):1200–1213, 2006.

    Article  Google Scholar 

  122. K Palaniappan, F Bunyak, S Nath, and J Goffeney. Parallel processing strategies for cell motility and shape analysis. 2009.

    Google Scholar 

  123. M Kass, A Witkin, and D Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1988.

    Article  MATH  Google Scholar 

  124. LD Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  125. V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. International Journal of Computer Vision, 22(1):61–79, 1997.

    Article  MATH  Google Scholar 

  126. TF Chan and LA Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001.

    Article  MATH  Google Scholar 

  127. JA Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999.

    MATH  Google Scholar 

  128. B Al-Diri, A Hunter, and D Steel. An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical Imaging, 28(9):1488–1497, 2009.

    Article  Google Scholar 

  129. Y Zhao, L Rada, K Chen, SP Harding, and Y Zheng. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transactions on Medical Imaging, 34(9):1797–1807, 2015.

    Article  Google Scholar 

  130. S Wang, Y Yin, G Cao, B Wei, Y Zheng, and G Yang. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 149:708–717, 2015.

    Article  Google Scholar 

  131. MM Fraz, P Remagnino, A Hoppe, B Uyyanonvara, AR Rudnicka, CG Owen, and SA Barman. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 59(9):2538–2548, 2012.

    Article  Google Scholar 

  132. E Ricci and R Perfetti. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 26(10):1357–1365, 2007.

    Article  Google Scholar 

  133. Y LeCun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436, 2015.

    Article  Google Scholar 

  134. J Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

    Article  Google Scholar 

  135. G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi, M Ghafoorian, JAWM van der Laak, B van Ginneken, and CI Sánchez. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60–88, 2017.

    Article  Google Scholar 

  136. J Long, E Shelhamer, and T Darrell. Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440, 2015.

    Google Scholar 

  137. Z Al-Milaji, I Ersoy, A Hafiane, K Palaniappan, and F Bunyak. Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images. Pattern Recognition Letters, 119:214–221, 2017.

    Article  Google Scholar 

  138. A Vedaldi and K Lenc. MatConvNet: Convolutional neural networks for Matlab. In ACM International Conference on Multimedia, pages 689–692, 2015.

    Google Scholar 

  139. P Liskowski and K Krawiec. Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 35(11):2369–2380, 2016.

    Article  Google Scholar 

  140. H Fu, Y Xu, S Lin, DWK Wong, and J Liu. DeepVessel: Retinal vessel segmentation via deep learning and conditional random field. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 132–139. Springer, 2016.

    Google Scholar 

  141. Q Li, B Feng, L Xie, P Liang, H Zhang, and T Wang. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Transactions on Medical Imaging, 35(1):109–118, 2016.

    Article  Google Scholar 

  142. KK Maninis, J Pont-Tuset, P Arbeláez, and L Van Gool. Deep retinal image understanding. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 140–148. Springer, 2016.

    Google Scholar 

  143. Y Lin, H Zhang, and G Hu. Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access, 7:57717–57724, 2018.

    Article  Google Scholar 

  144. Z Yan, X Yang, and KTT Cheng. Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transactions on Biomedical Engineering, 65(9):1912–1923, 2018.

    Article  Google Scholar 

  145. R Zheng, L Liu, S Zhang, C Zheng, F Bunyak, R Xu, B Li, and M Sun. Detection of exudates in fundus photographs with imbalanced learning using conditional generative adversarial network. Biomedical Optics Express, 9(10):4863–4878, 2018.

    Article  Google Scholar 

  146. YA Tolias and SM Panas. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Transactions on Medical Imaging, 17(2):263–273, 1998.

    Article  Google Scholar 

  147. O Chutatape, L Zheng, and SM Krishnan. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), volume 6, pages 3144–3149, 1998.

    Google Scholar 

  148. A Can, H Shen, JN Turner, HL Tanenbaum, and B Roysam. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 3(2):125–138, 1999.

    Article  Google Scholar 

  149. M Vlachos and E Dermatas. Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging and Graphics, 34(3):213–227, 2010.

    Article  Google Scholar 

  150. J Zhang, H Li, Q Nie, and L Cheng. A retinal vessel boundary tracking method based on bayesian theory and multi-scale line detection. Computerized Medical Imaging and Graphics, 38(6):517–525, 2014.

    Article  Google Scholar 

  151. F Benmansour and LD Cohen. Tubular structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision, 92(2):192–210, 2011.

    Article  Google Scholar 

  152. B Obara, M Fricker, D Gavaghan, and V Grau. Contrast-independent curvilinear structure detection in biomedical images. IEEE Transactions on Image Processing, 21(5):2572–2581, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  153. E Meijering. Neuron tracing in perspective. Cytometry Part A, 77(7):693–704, 2010.

    Article  MathSciNet  Google Scholar 

  154. L Acciai, P Soda, and G Iannello. Automated neuron tracing methods: An updated account. Neuroinformatics, 14(4):353–367, 2016.

    Article  Google Scholar 

  155. A Bhuiyan, B Nath, J Chua, and K Ramamohanarao. Automatic detection of vascular bifurcations and cross-overs from color retinal fundus images. In IEEE International Conference on Signal-Image Technologies and Internet-Based Systems, pages 711–718, 2007.

    Google Scholar 

  156. D Calvo, M Ortega, MG Penedo, and J Rouco. Automatic detection and characterisation of retinal vessel tree bifurcations and cross-overs in eye fundus images. Computer Methods and Programs in Biomedicine, 103(1):28–38, 2011.

    Article  Google Scholar 

  157. J De, L Cheng, X Zhang, F Lin, H Li, KH Ong, W Yu, Y Yu, and S Ahmed. A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Transactions on Medical Imaging, 35(1):257–272, 2016.

    Article  Google Scholar 

  158. QP Lau, ML Lee, W Hsu, TY Wong, EYK Ng, UR Acharya, A Campilo, and JS Suri. The Singapore eye vessel assessment system. Image Analysis and Modeling in Ophthalmology, pages 143–160, 2014.

    Google Scholar 

  159. O Smedby, N Högman, S Nilsson, U Erikson, AG Olsson, and G Walldius. Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. Journal of Vascular Research, 30(4):181–191, 1993.

    Article  Google Scholar 

  160. E Bullitt, G Gerig, SM Pizer, W Lin, and SR Aylward. Measuring tortuosity of the intracerebral vasculature. IEEE Transactions on Medical Imaging, 22(9):1163–1171, 2003.

    Article  Google Scholar 

  161. Emanuele Trucco, Hind Azegrouz, and Baljean Dhillon. Modeling the tortuosity of retinal vessels: Does caliber play a role? IEEE Transactions on Biomedical Engineering, 57(9):2239–2247, 2010.

    Article  Google Scholar 

  162. S Lorthois, F Lauwers, and F Cassot. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex. Microvascular Research, 91:99–109, 2014.

    Article  Google Scholar 

Download references

Acknowledgements

Partial support was provided by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award NIH R01NS110915 (KP). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. The authors appreciate the valuable collaboration and discussions with colleagues and lab members on microvasculature image analysis including Virginia H. Huxley, Olga V. Glinskii, V.B. Surya Prasath, Yasmin S. Kassim, and Rengarajan Pelapur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannappan Palaniappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palaniappan, K., Bunyak, F., Chaurasia, S.S. (2019). Image Analysis for Ophthalmology: Segmentation and Quantification of Retinal Vascular Systems. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_22

Download citation

Publish with us

Policies and ethics