Skip to main content

An Introduction to Instrumentation Used in Fire Debris and Explosive Analysis

  • Chapter
  • First Online:
Book cover Forensic Analysis of Fire Debris and Explosives

Abstract

Instrumentation is essential to forensic analysis of fire debris and explosives. Coupled gas chromatograph-mass spectrometer instruments are used extensively in the analysis of fire debris. The molecular compositions of explosives are analyzed with a variety of methods including gas and liquid chromatography, mass spectrometry, X-ray diffraction, and vibrational spectroscopy. The inorganic and elemental composition of explosives and related materials can be interrogated using techniques such as ion chromatography, vibrational spectroscopy, X-ray fluorescence, and scanning electron microscopy–energy-dispersive spectroscopy. Each instrumental technique has advantages and disadvantages for different types and forms of samples. A basic understanding of each method and the underlying theory will inform the development of effective analytical schemes for samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vessman J, Stefan RI, van Staden JF et al (2001) Selectivity in analytical chemistry (IUPAC Recommendations 2001). Pure Appl Chem 73:1381–1386. https://doi.org/10.1351/pac200173081381

    Article  CAS  Google Scholar 

  2. Prichard E, Barwick V (2007) Quality assurance in analytical chemistry, 1st edn. Wiley-Interscience, Chichester, Hoboken, Teddington, Middlesex

    Google Scholar 

  3. CAS, Assigns the 100 millionth CAS registry number to a substance designed to treat acute myeloid leukemia. http://support.cas.org/news/media-releases/100-millionth-substance. Accessed 30 Mar 2018

  4. CAS, Chemical abstracts service home page. http://support.cas.org/index. Accessed 30 Mar 2018

  5. Webster GK, Diaz AR, Seibert DS et al (2005) Plate number requirements for establishing method suitability. J Chromatogr Sci 43:67–72. https://doi.org/10.1093/chromsci/43.2.67

    Article  CAS  PubMed  Google Scholar 

  6. Jorgenson JW (2010) Capillary liquid chromatography at ultrahigh pressures. Annu Rev Anal Chem 3:129–150. https://doi.org/10.1146/annurev.anchem.1.031207.113014

    Article  CAS  Google Scholar 

  7. Lindsay S (1992) High performance liquid chromatography, 2nd edn. Wiley, Chichester, New York

    Google Scholar 

  8. Harris DC (2006) Quantitative chemical analysis, 7th edn. W. H. Freeman, New York

    Google Scholar 

  9. McNair HM, Miller JM (1997) Basic gas chromatography, 1st edn. Wiley-Interscience, New York

    Google Scholar 

  10. McCord B, Corbin I, Bender E (2011) Chromatography of explosives. In: Forensic investigation of explosions, 2nd edn. CRC Press, Boca Raton, p 36

    Chapter  Google Scholar 

  11. Fowlis IA (1995) Gas chromatography: Analytical chemistry by open learning, 2nd edn. Wiley, Chichester, New York

    Google Scholar 

  12. Douse JMF (1981) Trace analysis of explosives at the low picogram level by silica capillary column gas—liquid chromatography with electron-capture detection. J Chromatogr A 208:83–88. https://doi.org/10.1016/S0021-9673(00)87965-0

    Article  CAS  Google Scholar 

  13. Gregory KE, Kunz RR, Hardy DE et al (2011) Quantitative comparison of trace organonitrate explosives detection by GC-MS and GC-ECD2 methods with emphasis on sensitivity. J Chromatogr Sci 49:1–7. https://doi.org/10.1093/chrsci/49.1.1

    Article  CAS  Google Scholar 

  14. Hetrick EM, Schoenfisch MH (2009) Analytical chemistry of nitric oxide. Annu Rev Anal Chem 2:409–433. https://doi.org/10.1146/annurev-anchem-060908-155146

    Article  CAS  Google Scholar 

  15. Jimenez A (2004) Chemiluminescence detection systems for the analysis of explosives. J Hazard Mater 106:1–8. https://doi.org/10.1016/j.jhazmat.2003.07.005

    Article  CAS  PubMed  Google Scholar 

  16. Dicinoski GW, Shellie RA, Haddad PR (2006) Forensic identification of inorganic explosives by ion chromatography. Anal Lett 39:639–657. https://doi.org/10.1080/00032710600609735

    Article  CAS  Google Scholar 

  17. Abramovich-Bar S, Bamberger Y, Ravreby M, Levy S (1993) Applications of ion chromatography for determination and identification of chlorate, nitrite and nitrate in explosives and explosive residues. Advances in analysis and detection of explosives. Springer, Dordrecht, pp 41–54

    Chapter  Google Scholar 

  18. Barron L, Gilchrist E (2014) Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis. Anal Chim Acta 806:27–54. https://doi.org/10.1016/j.aca.2013.10.047

    Article  CAS  PubMed  Google Scholar 

  19. Lang GL, Boyle KM (2009) The analysis of black powder substitutes containing ascorbic acid by ion chromatography/mass spectrometry. J Forensic Sci 54:1315–1322. https://doi.org/10.1111/j.1556-4029.2009.01144.x

    Article  CAS  Google Scholar 

  20. Majors R (2013) Ion chromatography: yesterday, today, and tomorrow. LC GC 31:7

    Google Scholar 

  21. Nesterenko PN, Paull B (2017) Ion chromatography. In: Liquid chromatography. Elsevier, Amsterdam, pp 205–244

    Chapter  Google Scholar 

  22. Light TS, Licht SL (1987) Conductivity and resistivity of water from the melting to critical point. Anal Chem 59:2327–2330. https://doi.org/10.1021/ac00146a003

    Article  CAS  Google Scholar 

  23. Dasgupta PK, Shelor CP, Liao H (2013) Ion chromatography yesterday and today. LC GC 31:23–26

    Google Scholar 

  24. Macdonald JC (1985) Inorganic chromatographic analysis. Wiley, New York

    Google Scholar 

  25. Stevens TS, Davis JC, Small H (1981) Hollow fiber ion-exchange suppressor for ion chromatography. Anal Chem 53:1488–1492. https://doi.org/10.1021/ac00232a044

    Article  CAS  Google Scholar 

  26. Small H, Stevens TS, Bauman WC (1975) Novel ion exchange chromatographic method using conductimetric detection. Anal Chem 47:1801–1809. https://doi.org/10.1021/ac60361a017

    Article  CAS  Google Scholar 

  27. Whatley H (2001) Basic principles and modes of capillary electrophoresis. Clinical and forensic applications of capillary electrophoresis. Humana Press, Totowa, pp 21–58

    Google Scholar 

  28. McLafferty FW, Tureek F (1993) Interpretation of mass spectra, 4th edn. Univ Science Books, Mill Valley, Calif

    Google Scholar 

  29. Harrison AG, Cotter RJ (1990) Methods of ionization. In: Methods in enzymology. Academic Press, Cambridge, pp 3–37

    Google Scholar 

  30. Munson B (1971) Chemical ionization mass spectrometry. Anal Chem 43:28A–43A

    Article  CAS  Google Scholar 

  31. Munson MSB, Field FH (1966) Chemical ionization mass spectrometry. I. general introduction. J Am Chem Soc 88:2621–2630. https://doi.org/10.1021/ja00964a001

    Article  CAS  Google Scholar 

  32. Koenig JL (1999) Chapter 10—Mass spectrometry of polymers. In: Koenig JL (ed) Spectroscopy of polymers, 2nd edn. Elsevier Science, New York, pp 441–480

    Chapter  Google Scholar 

  33. Herbert CG, Johnstone RAW (2002) Mass spectrometry basics, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  34. Dougherty RC (1981) Negative chemical ionization mass spectrometry. Anal Chem 53:625A–634A

    Article  CAS  Google Scholar 

  35. Yinon J (1980) Analysis of explosives by negative ion chemical ionization mass spectrometry. J Forensic Sci 25:12145J. https://doi.org/10.1520/JFS12145J

    Article  Google Scholar 

  36. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679. https://doi.org/10.1021/ac00280a023

    Article  CAS  PubMed  Google Scholar 

  37. Yinon J (2003) Analysis of explosives by LC/MS. In: Advances in forensic applications of mass spectrometry. CRC Press, Boca Raton

    Chapter  Google Scholar 

  38. Gross JH (2017) Mass spectrometry: a textbook, 3rd edn. Springer, New York

    Google Scholar 

  39. Miller PE, Denton MB (1986) The quadrupole mass filter: basic operating concepts. J Chem Educ 63:617

    Article  CAS  Google Scholar 

  40. Biemann K (1990) Utility of exact mass measurements. In: Methods in enzymology, vol 193. Academic Press, Cambridge, pp 295–305

    Google Scholar 

  41. Cotter RJ (1997) Time-of-flight mass spectrometry: instrumentation and applications in biological research, 1st edn. American Chemical Society, Washington, DC

    Google Scholar 

  42. Hu Q, Noll RJ, Li H et al (2005) The orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443. https://doi.org/10.1002/jms.856

    Article  CAS  PubMed  Google Scholar 

  43. Yost RA, Boyd RK (1990) Tandem mass spectrometry: quadrupole and hybrid instruments. In: Methods in enzymology, vol 193. Academic Press, Cambridge, pp 154–200

    Google Scholar 

  44. Yost RA, Enke CG (1979) Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem 51:1251–1264. https://doi.org/10.1021/ac50048a002

    Article  CAS  PubMed  Google Scholar 

  45. Yinon J, McClellan JE, Yost RA. Electrospray ionization tandem mass spectrometry collision-induced dissociation study of explosives in an ion trap mass spectrometer. Rapid Commun Mass Spectrom 11:1961–1970. https://doi.org/10.1002/(SICI)1097-0231(199712)11:18%3c1961::AID-RCM99%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  46. Smith B (2011) Introduction to infrared spectroscopy. In: Fundamentals of fourier transform infrared spectroscopy, 2nd edn. p 18

    Google Scholar 

  47. Zitrin S, Tamiri T, Tamiri S (2011) Analysis of explosives by infrared spectrometry. In: Forensic investigation of explosions, 2nd edn. CRC Press, Boca Raton, pp 671–690

    Chapter  Google Scholar 

  48. Skoog DA, Holler FJ, Crouch SR (2006) Principles of instrumental analysis, 6th edn. Brooks Cole, Belmont

    Google Scholar 

  49. Brown K, Greenfield M, McGrane S, Moore D (2016) Advances in explosives analysis-part II: photon and neutron methods. Anal Bioanal Chem 408:49–65. https://doi.org/10.1007/s00216-015-9043-1

    Article  CAS  PubMed  Google Scholar 

  50. Woodward LA (1967) General introduction. Raman spectroscopy: theory and practice. Springer, US, pp 1–43

    Google Scholar 

  51. Nakamoto K (2009) Infrared and raman spectra of inorganic and coordination compounds, part A: theory and applications in inorganic chemistry, 6th edn. Wiley-Interscience, Hoboken

    Google Scholar 

  52. Kuligowski J, Lendl B, Quintás G (2017) Advanced IR and Raman detectors for identification and quantification. In: Liquid chromatography. Elsevier, Amsterdam, pp 463–477

    Chapter  Google Scholar 

  53. Moore DS (2004) Instrumentation for trace detection of high explosives. Rev Sci Instrum 75:2499–2512. https://doi.org/10.1063/1.1771493

    Article  CAS  Google Scholar 

  54. Smith E, Dent G (2005) Modern Raman spectroscopy: a practical approach. Wiley, Hoboken, p c2005

    Google Scholar 

  55. Zapata F, García-Ruiz C (2018) The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 189:535–542. https://doi.org/10.1016/j.saa.2017.08.058

    Article  CAS  PubMed  Google Scholar 

  56. Wallin S, Pettersson A, Östmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395:259–274. https://doi.org/10.1007/s00216-009-2844-3

    Article  CAS  PubMed  Google Scholar 

  57. Emmons ED, Tripathi A, Guicheteau JA et al (2009) Raman chemical imaging of explosive-contaminated fingerprints. Appl Spectrosc 63:1197–1203. https://doi.org/10.1366/000370209789806812

    Article  CAS  PubMed  Google Scholar 

  58. Hargreaves MD (2012) Drugs of abuse—application of handheld FT-IR and Raman spectrometers. In: Chalmers JM, Edwards HGM, Hargreaves MD (eds) Infrared and Raman spectroscopy in forensic science. Wiley, New York, pp 339–349

    Chapter  Google Scholar 

  59. Lawes G (1987) Scanning electron microscopy and X-Ray microanalysis, 1st edn. Wiley, Chichester, New York

    Google Scholar 

  60. Bisbing RE (2006) Trace evidence in the real crime laboratory. In: Mozayani A, Noziglia C (eds) The forensic laboratory handbook. Humana Press, Totowa, pp 265–290

    Chapter  Google Scholar 

  61. Sherma J, Larkin JD, Larkin FH (2007) X-Ray fluorescence spectrometry. J AOAC Int 90:163A–170A

    Google Scholar 

  62. Shackley MS (2011) An introduction to X-Ray fluorescence (XRF) analysis in archaeology. In: Shackley MS (ed) X-Ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New York, pp 7–44

    Chapter  Google Scholar 

  63. Jenkins R (1999) X-Ray fluorescence spectrometry, 2nd edn. Wiley, New York

    Google Scholar 

  64. Cesareo R, Gigante GE, Castellano A, Ridolfi S (2009) Portable and handheld systems for energy-dispersive X-ray fluorescence analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  65. Reimer L (1998) Scanning electron microscopy: physics of image formation and microanalysis, 2nd edn. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  66. Smith DK, Jenkins R (1996) The powder diffraction file: past, present, and future. J Res Natl Inst Stand Technol 101:259–271. https://doi.org/10.6028/jres.101.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. ICDD—International Centre for Diffraction Data. http://www.icdd.com/. Accessed 18 Aug 2018

  68. Kugler W (2003) X-ray diffraction analysis in the forensic science: the last resort in many criminal cases. Adv X-Ray Anal 46:1–16

    CAS  Google Scholar 

  69. Rendle DF (2003) X-ray diffraction in forensic science. Rigaku J 19:11–22

    Google Scholar 

  70. Stein SE. Mass spectra. In: NIST chemistry webbook, NIST standard reference database

    Google Scholar 

  71. Holmgren E, Ek S, Colmsjö A (2012) Extraction of explosives from soil followed by gas chromatography–mass spectrometry analysis with negative chemical ionization. J Chromatogr A 1222:109–115. https://doi.org/10.1016/j.chroma.2011.12.014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evans-Nguyen, K. (2019). An Introduction to Instrumentation Used in Fire Debris and Explosive Analysis. In: Evans-Nguyen, K., Hutches, K. (eds) Forensic Analysis of Fire Debris and Explosives. Springer, Cham. https://doi.org/10.1007/978-3-030-25834-4_1

Download citation

Publish with us

Policies and ethics