Skip to main content

Modern Design of the Transport Vehicles Drive Structures

  • Chapter
  • First Online:
Mining Machines and Earth-Moving Equipment
  • 474 Accesses

Abstract

In the modern design of the transport vehicles drives—universal joints are frequently derived from the synchronous operation. In the paper were discussed ways to counteract this phenomenon. It is necessary to build a diagnozer for the evaluation of the changes in the rigidity of the supports, internal dumping, rigidity of components, etc. Method of diagnosis will allow an assessment of the spatial position of the shafts, their dynamics and as a result, adjust the phase of the shaft. Phase control in real-time will occur through the use of smart tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anantapal, N.: The application concept of universal joint to make limited slip differential, center differential and clutch. SAE Technical Paper (2007). https://doi.org/10.4271/2007-01-0662

  2. Avallone E.A., Baumeister III T., Sadegh A.M.: Marks’ Standard Handbook for Mechanical Engineers. The McGraw-Hill Companies (2007)

    Google Scholar 

  3. Cornay, P., Britton, J.: New variations of the cardan concept increase universal joint performance. SAE Technical Paper (1991). https://doi.org/10.4271/911777

  4. Fischer, I.: Effect of mounting errors on cardan-type universal joint kinematics. SAE Technical Paper (1988). https://doi.org/10.4271/880483

  5. Flesch, G., Jaskulski, L.: The application of design of experiments as a support tool for a drive shaft retention system development. SAE Technical Paper (2005)

    Google Scholar 

  6. Garnham, J.: Constant velocity joint material performance criteria. SAE Technical Paper (1996). https://doi.org/10.4271/960572

  7. http://www.uni.edu/~rao

  8. Iqbal, J., Qatu, M.: Vibration analysis of a three-piece automotive shaft. SAE Technical Paper (2009). https://doi.org/10.4271/2009-01-2067

  9. Johnson, R.: High speed fixed constant velocity joint for automotive driveshaft applications. SAE Technical Paper (1998). https://doi.org/10.4271/980834

  10. Kulczyk I.: Wały napędowe, półosie, przeguby wałów i półosi. Bydgoszcz (2011)

    Google Scholar 

  11. Kunze, H., et al.: Vibration Reduction on Automotive Shafts Using Piezoceramics. Fraunhofer-Institute for Machine Tools and Forming Technology, Dresden/Germany), Volkswagen AG, Vibration-X, Winchester, MA, USA, Fraunhofer Institut Werkzeugmaschinen und Umformtechnik

    Google Scholar 

  12. Loh et al.: United States Patent US006752425B2. Semi-active control of automotive steering system vibration magneto_rheological damping, June 22, 2004

    Google Scholar 

  13. Lee, C., Polycarpou, A.: Experimental investigation of tripod constant velocity (CV) joint friction. SAE Technical Paper (2006). https://doi.org/10.4271/2006-01-0582

  14. Maciag, W., Mushenski, M.: New bearing design concept an innovative, U.S. army, design concept for tactical vehicle bearings and universal joints. SAE Technical Paper (1997). https://doi.org/10.4271/973178

  15. Magirius, S., Booker, D.: High speed constant velocity joints for car and light truck driveshafts. SAE Technical Paper (1995). https://doi.org/10.4271/950891

  16. Norton, R.L.: Machine Design: An Integrated Approach, 3rd edn. Prentice Hall (2006)

    Google Scholar 

  17. Park, B., StĂĽhler, W.: Dynamic Behaviour of a Universal Joints. SAE Technical Paper (1991)

    Google Scholar 

  18. Parmley, R.O.: Illustrated Sourcebook of Mech. McGraw-Hill, Components (2000)

    Google Scholar 

  19. Przystupa, F.W.: Diagnozer w systemie technicznym. Publishing House Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (2010)

    Google Scholar 

  20. Ramachandra, S.: Theoretical analysis for practical design of universal joint trunnion bearings. SAE Technical Paper (1986). https://doi.org/10.4271/860387

  21. Sakakibara, M.: Design CAE approach applied to drive train components. SAE Technical Paper (1995). https://doi.org/10.4271/950902

  22. Shigley, J.E., Mischke, C.R., Brown Jr., T.H.: Standard Handbook of Machine Design. The McGraw-Hill Companies (2004)

    Google Scholar 

  23. Tsuda, M., Kojima, H., Arita, M.: The development on cold forging technique to form a component of the constant velocity joint. SAE Technical Paper (1986)

    Google Scholar 

  24. Ullman, D.: The Mechanical Design Process, 3rd edn. McGraw-Hill (2002)

    Google Scholar 

  25. Vedam, K., et al.: Analysis of an automotive driveline with cardan universal joints. SAE Technical Paper (1995). https://doi.org/10.4271/950895

  26. Yamamoto, T., Matsuda, T., Okano, N.: Efficiency of constant velocity universal joints. SAE Technical Paper (1993). https://doi.org/10.4271/930906

  27. Z Car, Diytrade, Pelican Parts, Trico Driveshaft Company, Atlantic

    Google Scholar 

  28. Gubran, H.B.H., Gupta, K.: Design optimization of automotive propeller shafts. J Vib. Eng. Technol. 2(1) (2014). ©Krishtel eMaging Solutions Pvt. Ltd.

    Google Scholar 

  29. Bankar, H., et al.: Material optimization and weight reduction of drive shaft using composite material. IOSR J. Mech. Civil Eng. (IOSR-JMCE) 10(1). e-ISSN: 2278-1684, p-ISSN: 2320-334X (2013)

    Article  Google Scholar 

  30. Sheikh, S.M.A.: Analysis of universal coupling under different torque condition. Int. J. Eng. Sci. Adv. Technol. [IJESAT] 2(3), 690–694. Available online at http://www.ijesat.org (2012)

  31. Yu, R.S., et al.: Numerical investigation on the dynamic behaviour of advanced ceramics. Eng. Fract. Mech. 71, 897–911 (2004)

    Article  Google Scholar 

  32. Khoshravan, M.R., Paykani, A.: Design of a composite drive shaft and its coupling for automotive application. J. Appl. Res. Technol. 10 (2012)

    Google Scholar 

  33. Slocum, A.H.: ME 2.075 Course Notes. MIT (2001)

    Google Scholar 

  34. Weck, M., Brecher, C.: Werkzeugmaschinen (Band 2). Springer-Verlag (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciszek W. Przystupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Przystupa, F.W. (2020). Modern Design of the Transport Vehicles Drive Structures. In: Sokolski, M. (eds) Mining Machines and Earth-Moving Equipment. Springer, Cham. https://doi.org/10.1007/978-3-030-25478-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25478-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25477-3

  • Online ISBN: 978-3-030-25478-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics