Skip to main content

Succinct Representations of Finite Groups

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11651))

Included in the following conference series:

  • 667 Accesses

Abstract

The Cayley table representation of a group uses \(O(n^2)\) words for a group of order n and answers multiplication queries in time O(1) in word RAM model. It is interesting to ask if there is a \(o(n^2)\) space representation of groups that still has O(1) query-time. We show that for any \(\delta \), \(\frac{1}{\log n} \le \delta \le 1\), there is an \(\mathcal {O}(\frac{n^{1 +\delta }}{\delta })\) space representation for groups of order n with \(\mathcal {O}(\frac{1}{\delta })\) query-time.

We also show that for Dedekind groups, simple groups and several group classes defined in terms of semidirect product, there are linear space representation to answer multiplication queries in logarithmic time.

Farzan and Munro (ISSAC’06) defined a model for group representation and gave a succinct data structure for abelian groups with constant query-time. They asked if their result can be extended to categorically larger group classes. We show we can construct data structures in their model to represent Hamiltonian groups and extensions of abelian groups by cyclic groups to answer multiplication queries in constant time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An elementary abelian 2-group is an abelian group in which every nontrivial element has order 2.

  2. 2.

    If \((\alpha _1,\cdots ,\alpha _k)\notin \text {Image}(F)\), then the value could be arbitrary.

References

  1. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 684–697. ACM (2016). https://doi.org/10.1145/2897518.2897542

  2. Babai, L., Kantor, W.M., Lubotsky, A.: Small-diameter cayley graphs for finite simple groups. Eur. J. Comb. 10, 507–522 (1989). https://doi.org/10.1016/S0195-6698(89)80067-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC\(^1\). J. Comput. Syst. Sci. 38, 150–164 (1989). https://doi.org/10.1016/0022-0000(89)90037-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Carmichael, R.D.: Introduction to the Theory of Groups of Finite Order. GINN and Company (1937)

    Google Scholar 

  5. Chen, L., Fu, B.: Linear and sublinear time algorithms for the basis of abelian groups. Theor. Comput. Sci. 412, 4110–4122 (2011). https://doi.org/10.1016/j.tcs.2010.06.011

    Article  MathSciNet  MATH  Google Scholar 

  6. Dummit, D.S., Foote, R.M.: Abstract Algebra, vol. 3. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  7. Erdös, P., Rényi, A.: Probabilistic methods in group theory. J. d’Analyse Math. 14, 127–138 (1965). https://doi.org/10.1007/BF02806383

    Article  MathSciNet  MATH  Google Scholar 

  8. Eugene, M.: Permutation groups and polynomial-time computation. In: Groups and Computation: Workshop on Groups and Computation, 7–10 October 1991, vol. 11, p. 139. American Mathematical Society (1993)

    Google Scholar 

  9. Farzan, A., Munro, J.I.: Succinct representation of finite abelian groups. In: Proceedings of the Symbolic and Algebraic Computation, International Symposium, ISSAC 2006, Genoa, Italy, 9–12 July 2006, pp. 87–92. ACM (2006). https://doi.org/10.1145/1145768.1145788

  10. Kavitha, T.: Linear time algorithms for abelian group isomorphism and related problems. J. Comput. Syst. Sci. 73, 986–996 (2007). https://doi.org/10.1016/j.jcss.2007.03.013

    Article  MathSciNet  MATH  Google Scholar 

  11. Kayal, N., Nezhmetdinov, T.: Factoring groups efficiently. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 585–596. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_49

    Chapter  Google Scholar 

  12. Kumar, S.R., Rubinfeld, R.: Property testing of abelian group operations (1998)

    Google Scholar 

  13. Leedham-Green, C.R., Soicher, L.H.: Collection from the left and other strategies. J. Symb. Comput. 9, 665–675 (1990). https://doi.org/10.1016/S0747-7171(08)80081-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Le Gall, F.: An efficient quantum algorithm for some instances of the group isomorphism problem. In: 27th International Symposium on Theoretical Aspects of Computer Science, vol. 5, pp. 549–560 (2010). https://doi.org/10.4230/LIPIcs.STACS.2010.2484

  15. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–65 (1982). https://doi.org/10.1016/0022-0000(82)90009-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory: presentations of groups in terms of generators and relations. Courier Corporation (2004)

    Google Scholar 

  17. Miller, G.A., Moreno, H.C.: Non-abelian groups in which every subgroup is abelian. Trans. Am. Math. Soc. 4, 398–404 (1903). https://doi.org/10.2307/1986409

    Article  MathSciNet  MATH  Google Scholar 

  18. Qiao, Y., Sarma M.N., J., Tang, B.: On isomorphism testing of groups with normal hall subgroups. In: 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), pp. 567–578 (2011). https://doi.org/10.4230/LIPIcs.STACS.2011.567

  19. Seress, Á.: Permutation Group Algorithms, vol. 152. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  20. Sims, C.C.: Computation with Finitely Presented Groups, vol. 48. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  21. Vikas, N.: An \(\cal{O}(n)\) algorithm for abelian \(p\)-group isomorphism and an \(\cal{O}(n \log n)\) algorithm for abelian group isomorphism. J. Comput. Syst. Sci. 53, 1–9 (1996). https://doi.org/10.1006/jcss.1996.0045

    Article  MathSciNet  MATH  Google Scholar 

  22. Wilson, J.B.: Existence, algorithms, and asymptotics of direct product decompositions, I. Groups Complex. Cryptol. 4, 33–72 (2012). https://doi.org/10.1515/gcc-2012-0007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivdutt Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, B., Sharma, S., Vaidyanathan, P.R. (2019). Succinct Representations of Finite Groups. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25027-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25026-3

  • Online ISBN: 978-3-030-25027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics