Skip to main content

Dysregulation of Heat Shock Proteins in Neurodegenerative Diseases: Restorative Roles of Small Molecules and Natural Compounds

  • Chapter
  • First Online:
Heat Shock Proteins in Neuroscience

Part of the book series: Heat Shock Proteins ((HESP,volume 20))

  • 411 Accesses

Abstract

Gradual depositions of misfolded amyloid proteins play major roles in onset, progression and severity of many neurodegenerative diseases. Several protein clearance machineries exist in the cell which are involved in degradation of these proteins. Therefore, these systems are considered the key players of cellular protein homeostasis. A molecular chaperone, such as heat shock protein (HSP) is one of them, which play a crucial role in degradation of these misfolded protein aggregates. Indeed, larger protein aggregates are degraded by phagocytosis or macroautophagy mechanism, whereas smaller protein aggregates are degraded within the lysosomes with the help of HSP or via ubiquitin proteosomal system. Importantly, the HSPs become dysregulated in different neurodegenerative diseases. Therefore, enhancement of cellular protein quality control machineries, specifically the levels and activities of molecular chaperones could suppress the misfolded protein aggregation and can restore cellular function. Several small molecules and natural polyphenols have been shown to maintain HSP levels in different neurodegenerative diseases. In this book chapter, we discuss the current understanding of the roles of HSPs in protein misfolding neurological diseases, especially on Alzheimer’s, Parkinson’s, Huntington’s, prion diseases and tauopathies. In addition, we also highlighted the modulatory roles of natural polyphenols on HSPs as a therapeutic strategy for protein misfolding neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-Syn:

Alfa synuclein

Aβ:

Amyloid beta protein

AD:

Alzheimer’s disease

AIF:

Apoptosis-inducing factor

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

APPsw:

Amyloid precursor protein Sweedis

ATP:

Adenosine triphosphate

CAG:

Cytosine-adenine-guanine

CHIP:

C-terminus of HSC70-interacting protein

CMA:

Chaperone-mediated autophagy

CNS:

Central nervous system

DA:

Dopamine

DAT:

Dopamine transporter

EGCG:

Epigallocatechin gallate

ER:

Endoplasmic reticulum

FTD-17:

Frontotemporal dementia with Parkinsonism

GA:

Gambogic acid

GSH:

Reduced glutathione

HD:

Huntington’s disease

HIP:

HSC70-interacting protein

HOP:

HSP70-HSP90 organizing protein

HSP:

Heat shock protein

HSF:

Heat shock factor

HSE:

Heat shock element

LB:

Lewy bodies

LRRK2:

Leucine-rich repeat kinase-2

MAPK:

Mitogen activated protein kinase

mHTT:

Mutant huntingtin

MW:

Molecular weight

NF-kβ:

Nuclear factor kappa beta

NFT:

Neurofibrillary tangle

NSAIDS:

Non steroidal anti-inflammatory drugs

PD:

Parkinson’s disease

PINK-1:

PTEN-induced putative kinase-1

PolyQ:

Poly-glutamine

ppm:

Parts per million

PrP:

Prion protein

PrPc:

Prion protein cellular form

PrPSc:

Prion protein scrapie isoform

PS1:

Preseniline-1

PSP:

Progressive supra-nuclear palsy

pTau:

Phosphorylated tau

RAC:

Ribosome-associated complex

sHSP:

Small heat shock protein

SNpc:

Substantia-nigra pars compacta

SOD:

Superoxide dismutase

TRAP-1:

Tumor necrosis factor receptor-associated protein-1

TSE:

Transmissible spongiform encephalopathies

UCHL-1:

Ubiquitin carboxyl-terminal esterase L1

WA:

Withaferin-A

References

  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  PubMed  Google Scholar 

  • Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta, Proteins Proteomics 1854(4):291–319

    Article  CAS  Google Scholar 

  • Baldo B, Weiss A, Parker CN, Bibel M, Paganetti P, Kaupmann K (2012) A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J Biol Chem 287:1406–1414

    Article  CAS  PubMed  Google Scholar 

  • Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boridy S, Le PU, Petrecca K, Maysinger D (2014) Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 5:e1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breydo L, Wu JW, Uversky VN (2012) Alpha-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285

    Article  CAS  PubMed  Google Scholar 

  • Broer L, Koudstaal PJ, Amin N, Rivadeneira F, Uitterlinden AG, Hofman A, Oostra BA, Breteler MMB, Ikram A, van Duijn CM (2011) Association of heat shock proteins with Parkinson’s disease. Eur J Epidemiol 26:933–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Broersen K, Rousseau F, Schymkowitz J (2010) The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: oligomer size or conformation? Alzheimers Res Ther 2:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bross P, Magnoni R, Bie AS (2012) Molecular chaperone disorders: defective Hsp60 in neurodegeneration. Curr Top Med Chem 12:2491–2503

    Article  CAS  PubMed  Google Scholar 

  • Brownell SE, Becker RA, Steinman L (2012) The protective and therapeutic function of small heat shock proteins in neurological diseases. Front Immunol 3:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruinsma IB, Bruggink KA, Kinast K, Versleijen AA, Segers-Nolten IM, Subramaniam V, Kuiperij HB, Boelens W, de Waal RM, Verbeek MM (2011) Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 79:2956–2967

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:E1978

    Article  PubMed  CAS  Google Scholar 

  • Chow AM, Brown IR (2007) Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 12:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochemistry 48:2574–2585

    Article  CAS  PubMed  Google Scholar 

  • Cox D, Whiten DR, Brown JWP, Horrocks MH, San Gil R, Dobson CM, Klenerman D, van Ijen AM, Ecroyd H (2018) The small heat shock protein Hsp27 binds alpha-synuclein fibrils, preventing elongation and cytotoxicity. J Biol Chem 293:4486–4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V (2015) Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 12:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BS, Matts RL (2011) Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod 74:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickey C, Kraft C, Jinwal U, Koren J, Johnson A, Anderson L, Lebson L, Lee D, Dickson D, de Silva R, Binder LI, Morgan D, Lewis J (2009) Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy. Am J Pathol 174:228–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34:40–48

    Article  CAS  PubMed  Google Scholar 

  • Dube V, Grigull J, DeSouza LV, Ghanny S, Colgan TJ, Romaschin AD, Siu KW (2007) Verification of endometrial tissue biomarkers previously discovered using mass spectrometry-based proteomics by means of immunohistochemistry in a tissue microarray format. J Proteome Res 6:2648–2655

    Article  CAS  PubMed  Google Scholar 

  • Duennwald ML, Echeverria A, Shorter J (2012) Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 10:e1001346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulle JE, Stein KC, True HL (2014) Regulation of the Hsp104 middle domain activity is critical for yeast prion propagation. PLoS One 9:e87521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elia G, Polla B, Rossi A, Santoro MG (1999) Induction of ferritin and heat shock proteins by prostaglandin A1 in human monocytes. Evidence for transcriptional and post-transcriptional regulation. Eur J Biochem 264:736–745

    Article  CAS  PubMed  Google Scholar 

  • Evans CG, Wisen S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 281:33182–33191

    Article  CAS  PubMed  Google Scholar 

  • Fontaine SN, Martin MD, Dickey CA (2016a) Neurodegeneration and the heat shock protein 70 machinery: implications for therapeutic development. Curr Top Med Chem 16:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D, Darling A, Trotter JH, Stothert AR, Nordhues BA, Lussier A, Baker J, Shelton L, Kahn M, Blair LJ, Stevens SM Jr, Dickey CA (2016b) DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 35:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo KA (2006) Targeting HSP90 to halt neurodegeneration. Chem Biol 13:115–116

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Lee VM (2003) Are ubiquitination pathways central to Parkinson’s disease? Cell 114:1–8

    Article  CAS  PubMed  Google Scholar 

  • Giorgetti S, Greco C, Tortora P, Aprile FA (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int J Mol Sci 19:E2677

    Article  PubMed  CAS  Google Scholar 

  • Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113:1073–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Choi JR, Soon Shin K, Kang SJ (2012) Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 1483:112–117

    Article  CAS  PubMed  Google Scholar 

  • Hansen RK, Oesterreich S, Lemieux P, Sarge KD, Fuqua SA (1997) Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun 239:851–856

    Article  CAS  PubMed  Google Scholar 

  • Hargitai J, Lewis H, Boros I, Rácz T, Fiser A, Kurucz I, Benjamin I, Vígh L, Pénzes Z, Csermely P, Latchman DS (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307:689–695

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aokiet M (2017) DnaJ/Hsp40 family and Parkinson’s disease. Front Neurosci 11:743

    Article  PubMed  Google Scholar 

  • Hu J, Han H, Cao P, Yu W, Yang C, Gao Y, Yuan W (2017) Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice. Am J Transl Res 9:4607–4616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP (2017) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel) 11(1). https://doi.org/10.3390/ph11010002

    Article  PubMed Central  CAS  Google Scholar 

  • Jana NR, Tanaka M, Wang G, Nukinaet N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018

    Article  CAS  PubMed  Google Scholar 

  • Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12:255–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DR, Moussaud S, McLean P (2014) Targeting heat shock proteins to modulate alpha-synuclein toxicity. Ther Adv Neurol Disord 7:33–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khan S, Rammeloo AW, Heikkila JJ (2012) Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. PLoS One 7:e50547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneynsberg A, Combs B, Christensen K, Morfini G, Kanaan NM (2017) Axonal degeneration in tauopathies: disease relevance and underlying mechanisms. Front Neurosci 11:572

    Article  PubMed  PubMed Central  Google Scholar 

  • Krobitsch S, Brandau S, Hoyer C, Schmetz C, Hübel A, Clos J (1998) Leishmania donovani heat shock protein 100. Characterization and function in amastigote stage differentiation. J Biol Chem 273:6488–6494

    Article  CAS  PubMed  Google Scholar 

  • Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Leak RK (2014) Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 8:293–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Dewey WC (1987) Induction of heat shock proteins in Chinese hamster ovary cells and development of thermotolerance by intermediate concentrations of puromycin. J Cell Physiol 132:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:478–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Qian X, Sha B (2009) Heat shock protein 40: structural studies and their functional implications. Protein Pept Lett 16:606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Zhao D, Yang L (2013) Interaction between misfolded PrP and the ubiquitin-proteasome system in prion-mediated neurodegeneration. Acta Biochim Biophys Sin Shanghai 45:477–484

    Article  CAS  PubMed  Google Scholar 

  • Liu LL, He JH, Xie HB, Yang YS, Li JC, Zou Y (2014) Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult Sci 93:54–62

    Article  CAS  PubMed  Google Scholar 

  • Lu RC, Tan MS, Wang H, Xie AM, Yu JT, Tan L (2014) Heat shock protein 70 in Alzheimer’s disease. Biomed Res Int 2014:435203

    PubMed  PubMed Central  Google Scholar 

  • Luo W, Sun W, Taldone T, Rodina A, Chiosis G (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Teng E, Hu S, Chen PP, Maiti P, Teter B, Cole GM, Frautschy SA (2013) Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem 288:4056–4065

    Article  CAS  PubMed  Google Scholar 

  • Maiti P, Dunbar GL (2017) Comparative neuroprotective effects of dietary curcumin and solid lipid curcumin particles in cultured mouse neuroblastoma cells after exposure to Abeta42. Int J Alzheimers Dis 2017:4164872

    PubMed  PubMed Central  Google Scholar 

  • Maiti P, Dunbar GL (2018) Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci 19:E1637

    Article  PubMed  CAS  Google Scholar 

  • Maiti P, Manna J, Veleri S, Frautschy S (2014) Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int 2014:495091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiti P, Hall TC, Paladugu L, Kolli N, Learman C, Rossignol J, Dunbar GL (2016) A comparative study of dietary curcumin, nanocurcumin, and other classical amyloid-binding dyes for labeling and imaging of amyloid plaques in brain tissue of 5x-familial Alzheimer’s disease mice. Histochem Cell Biol 146:609–625

    Article  CAS  PubMed  Google Scholar 

  • Maiti P, Paladugu L, Dunbar GL (2018) Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer’s disease. BMC Neurosci 19:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Breakefield XO, Hyman BT (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83:846–854

    Article  CAS  PubMed  Google Scholar 

  • Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369–381

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Koren J, Kiray J, Dickey CA, Gestwicki JE (2011) Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Med Chem 3:1523–1537

    Article  CAS  PubMed  Google Scholar 

  • Moses MA, Henry EC, Ricke WA, Gasiewicz TA (2015) The heat shock protein 90 inhibitor, (-)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model. Cancer Prev Res (Phila) 8:249–257

    Article  CAS  PubMed Central  Google Scholar 

  • Moura CS, Lollo PCB, Morato PN, Amaya-Farfan J (2018) Dietary nutrients and bioactive substances modulate heat shock protein (HSP) expression: a review. Nutrients 10:E683

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hart MK, Hart FU (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 97:7841–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutsuga M, Chambers JK, Uchida K, Tei M, Makibuchi T, Mizorogi T, Takashima A, Nakayama H (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain. J Vet Med Sci 74:51–57

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Hong JY, Arslan F, Kanneganti V, Patel B, Tietsort A, Tank EMH, Li X, Barmada SJ, Liebman SW (2017) Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 13:e1006805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pastore A, Zagari A (2007) A structural overview of the vertebrate prion proteins. Prion 1:185–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel P, Julien JP, Kriz J (2015) Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics 12:217–233

    Article  CAS  PubMed  Google Scholar 

  • Patterson KR, Ward SM, Combs B, Voss K, Kanaan NM, Morfini G, Brady ST, Gamblin TC, Binder LI (2011) Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry 50:10300–10310

    Article  CAS  PubMed  Google Scholar 

  • Putics A, Végh EM, Csermely P, Soti C (2008) Resveratrol induces the heat-shock response and protects human cells from severe heat stress. Antioxid Redox Signal 10:65–75

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Dragatsis I, Dietrich P (2011) Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol 98:325–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi A, Elia G, Santoro MG (1998) Activation of the heat shock factor 1 by serine protease inhibitors. An effect associated with nuclear factor-kappaB inhibition. J Biol Chem 273:16446–16452

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog Neurobiol 93:99–110

    Article  CAS  PubMed  Google Scholar 

  • Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA (2006) Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther 5:522–532

    Article  CAS  PubMed  Google Scholar 

  • Sarkar M, Kuret J, Lee G (2008) Two motifs within the tau microtubule-binding domain mediate its association with the hsc70 molecular chaperone. J Neurosci Res 86:2763–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte TW, Akinaga S, Murakata T, Agatsuma T, Sugimoto S, Nakano H, Lee YS, Simen BB, Argon Y, Felts S, Toft DO, Neckers LM, Sharma SV (1999) Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol 13:1435–1448

    Article  CAS  PubMed  Google Scholar 

  • Sharp SY, Boxall K, Rowlands M, Prodromou C, Roe SM, Maloney A, Powers M, Clarke PA, Box G, Sanderson S, Patterson L, Matthews TP, Cheung KM, Ball K, Hayes A, Raynaud F, Marais R, Pearl L, Eccles S, Aherne W, McDonald E, Workman P (2007) In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors. Cancer Res 67:2206–2216

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, He JC, Wang Y, Huang QY, Chen JF (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi N, Hirano Y (2016) Effect of chaperones on prion protein PrP23-98 aggregation in vitro. Protein Pept Lett 23:988–993

    Article  CAS  PubMed  Google Scholar 

  • Sittler A, Lurz R, Lueder G, Priller J, Hayer-Hartl MKF, Hart U, Lehrach H, Wankeret EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Snyman M, Cronje MJ (2008) Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot 59:2125–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano SM, Miller DW, Augood SJ, Young AB, Penney JB Jr (2000) Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 47:201–210

    Article  CAS  PubMed  Google Scholar 

  • Soto C, Brañes MC, Alvarez J, Inestrosa NC (1994) Structural determinants of the Alzheimer’s amyloid beta-peptide. J Neurochem 63:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Storniolo A, Raciti M, Cucina A, Bizzarri M, Livia Di Renzo LD (2015) Quercetin affects Hsp70/IRE1alpha mediated protection from death induced by endoplasmic reticulum stress. Oxidative Med Cell Longev 2015:645157

    Article  CAS  Google Scholar 

  • Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129:3006–3019

    Article  PubMed  Google Scholar 

  • Taylor IR, Ahmad A, Wu T, Nordhues BA, Bhullar A, Gestwicki JE, Zuiderweg ERP (2018) The disorderly conduct of Hsc70 and its interaction with the Alzheimer’s-related Tau protein. J Biol Chem 293:10796–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG (2010) Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trott A, West JD, Klaić L, Westerheide SD, Silverman RB, Morimoto RI, Morano KA (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19:1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle JA, Castle PC, Metcalfe AJ, Midgley AW, Taylor L, Lewis MP (2015) Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90alpha (HSPC1) gene transcripts. J Appl Physiol 118:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Vacher C, Garcia-Oroz L, Rubinsztein DC (2005) Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington’s disease. Hum Mol Genet 14:3425–3433

    Article  CAS  PubMed  Google Scholar 

  • Van Rijn J, Wiegant FA, Van den Berg J, Van Wijk R (2000) Heat shock response by cells treated with azetidine-2-carboxylic acid. Int J Hyperth 16:305–318

    Article  Google Scholar 

  • Vidyasagar A, Wilson NA, Djamali A (2012) Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 5:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Semin Neurol 27:143–150

    Article  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ren D (2016) Allicin protects traumatic spinal cord injury through regulating the HSP70/Akt/iNOS pathway in mice. Mol Med Rep 14:3086–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100

    Article  CAS  PubMed  Google Scholar 

  • Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S, Gu W, Devlin JP, Silverman RB, Morimoto RI (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279:56053–56060

    Article  CAS  PubMed  Google Scholar 

  • Wijeratne EM, Xu YM, Ruth Scherz-Shouval R, Marron MT, Rocha DD, Liu MX, Costa-Lotufo LV, Santagata S, Lindquist S, Whitesell L, Leslie Gunatilaka AA, A.A.L. (2014) Structure-activity relationships for withanolides as inducers of the cellular heat-shock response. J Med Chem 57:2851–2863

    Article  CAS  PubMed  Google Scholar 

  • Wszolek ZK, Tsuboi Y, Ghetti B, Pickering-Brown S, Baba Y, Cheshire WP (2006) Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Orphanet J Rare Dis 1:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Cui M, Lee J, Gong W, Wang S, Fu J, Wu G, Yan K (2016) Heat shock protein inhibitor, quercetin, as a novel adjuvant agent to improve radiofrequency ablation-induced tumor destruction and its molecular mechanism. Chin J Cancer Res 28:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota S, Kitahara M, Nagata K (2000) Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60:2942–2948

    CAS  PubMed  Google Scholar 

  • Zhang X, Shi J, Tian J, Robinson AC, Davidson YS, Mann DM (2014) Expression of one important chaperone protein, heat shock protein 27, in neurodegenerative diseases. Alzheimers Res Ther 6:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo D, Subjeck J, Wang XY (2016) Unfolding the role of large heat shock proteins: new insights and therapeutic implications. Front Immunol 7:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Veterans Administration and national institute of health and the Cure HD Initiative. We thank Prof. Sally Frautschy, University of California at Los Angeles.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maiti, P., Manna, J. (2019). Dysregulation of Heat Shock Proteins in Neurodegenerative Diseases: Restorative Roles of Small Molecules and Natural Compounds. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Neuroscience. Heat Shock Proteins, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-24285-5_7

Download citation

Publish with us

Policies and ethics