Skip to main content

A SVM Algorithm for Falling Detection in an IoTs-Based System

  • Chapter
  • First Online:
A Handbook of Internet of Things in Biomedical and Cyber Physical System

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 165))

Abstract

Falling of elderly people is one of main reasons causing serious injuries or the risk of early death. However, this may be reduced by using an IoTs-based fall detection system, in which a SVM algorithm and PCA features are applied. In addition, datasets collected from tri-axial accelerometer sensors and/or Kinect camera systems are transferred to a central Hub via Zigbee interface and are updated continuously to a cloud server for processing and detecting fall states. In addition, fall messages can be sent to relatives through smartphones and/or healthcare centers for alert and supporting soon. Experimental results show to illustrate the effectiveness of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Global report on Falls Prevention in older Age, World Health Org

    Google Scholar 

  2. https://apps.who.int/iris/handle/10665/43811. Accessed 2008

  3. Seniors’ Falls in Canada Second report, Public Health Agency of Canada

    Google Scholar 

  4. https://www.canada.ca/en/public-health/services/health-promotion/aging-seniors/publications/publications-general-public/seniors-falls-canada-second-report.html. Accessed April 10, 2014

  5. WHOGlobal report on Falls Prevention in older Age, World Health Org

    Google Scholar 

  6. https://www.who.int/ageing/projects/falls_prevention_older_age/en/. Accessed February 2007

  7. Pannurat, N., Thiemjarus, S., Nantajeewarawat, E.: Automatic fall monitoring: a review. Sensors 14, 12900–12936 (2014)

    Article  Google Scholar 

  8. Lee, R.Y., Carlisle, A.J.: Detection of falls using accelerometers and mobile phone technology. Age Ageing 40, 690–696 (2011)

    Article  Google Scholar 

  9. Kawatsu, C., Li, J., Chung, C.J.: Development of a fall detection system with microsoft kinect. Int. Conf. Robot Intell. Technol. Appl. 208, 623–630 (2012)

    Google Scholar 

  10. Stone, E.E., Skubic, M.: Falls detection in homes of older adults using the microsoft kinect. IEEE J. Biomed. Health Inform. 19, 290–301 (2014)

    Article  Google Scholar 

  11. Wen-Chang, C., Ding-Mao, J.: Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier. IEEE J. Biomed. Health Inform. 17, 411–419 (2013)

    Article  Google Scholar 

  12. Narayanan, M.R., Karantonis, D.M., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10, 156–167 (2006)

    Article  Google Scholar 

  13. Bourke, A.K., O’Brien, J.V., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture. 26, 194–199 (2007)

    Article  Google Scholar 

  14. Alwan, M., Rajendran, P.J., Kell, S., Mack, D., Dalal, S., Wolfe, M., Felder, R.: A smart and passive floor-vibration based fall detector for elderly. Inf. Commun. Technol. 1, 1003–1007 (2006)

    Google Scholar 

  15. Zigel, Y., Litvak, D., Gannot, I.: A method for automatic fall detection of elderly people using floor vibrations and sound—Proof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 12, 2858–2867 (2009)

    Article  Google Scholar 

  16. Fu, Z., Culurciello, E., Lichtsteiner, P., Delbruck, T.: Fall detection using an address-event temporal contrast vision sensor. IEEE Int. Symp. Circ. Syst. (2008). https://doi.org/10.1109/iscas.2008.4541445

  17. McKenna, S.J., Charif, H.N.: Summarising contextual activity and detecting unusual inactivity in a supportive home environment. Pattern Anal. Appl. 7, 386–401 (2004)

    Article  MathSciNet  Google Scholar 

  18. Foroughi, H., Aski, B.S., Pourreza, H. Intelligent video surveillance for monitoring fall detection of elderly in home environments. In The 11th International Conference on Computer and Information Technology (2008). https://doi.org/10.1109/iccitechn.2008.4803020

  19. Miaou, S.-G., Sung, P.-H., Huang, C.-Y.: A customized human fall detection system using omni-camera images and personal information. In The 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare (2006). https://doi.org/10.1109/ddhh.2006.1624792

  20. Stefano Abbate, M.A., Corsini, P., Light, J., Vecchio, A.: In: Tan, Yen Kheng (ed.) Wireless sensor networks: application—centric design. IntechOpen Limited, London (2010)

    Google Scholar 

  21. Burchfield, T., Venkatesan, S.: Accelerometer-based human abnormal movement detection in wireless sensor networks. In The 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments (pp. 67–69) (2007)

    Google Scholar 

  22. Ye, Z., Li, Y.Z., Liu, Q.: A falling detection system with wireless sensor for the elderly people based on ergnomics. Int. J. Smart Home. 8, 187–196 (2014)

    Article  Google Scholar 

  23. He, J., Hu, C., Wang, X.: A smart device enabled system for autonomous fall detection and alert international. J. Distrib. Sensor Netw. (2016). https://doi.org/10.1155/2016/2308183

    Article  Google Scholar 

  24. Ye, Z., Li, Y., Zhao, Q., Liu, X.: A falling detection system with wireless sensor for the elderly people based on ergnomics. Int. J. Smart Home 8, 187–196 (2014)

    Article  Google Scholar 

  25. Bourke, A., Van de Ven, P., Gamble, M., O’Connor, R., Murphy, K., Bogan, E., et al.: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. J. Biomech. 43, 3051–3057 (2010)

    Article  Google Scholar 

  26. Lee, Y., Lee, M.: Accelerometer sensor module and fall detection monitoring system based on wireless sensor network for e-health applications. Telemed. J. E-health 14, 587–592 (2008)

    Article  Google Scholar 

  27. Moving Average Filter (MA filter), Gaussian Waves

    Google Scholar 

  28. https://www.gaussianwaves.com/2010/11/23. Accessed November 23, 2010

  29. Dubois, A., Charpillet, F.: Detecting and preventing falls with depth camera, tracking the body center. In The 12th European Association for the Advancement of Assistive Technology in Europe (pp. 77–82) (2013)

    Google Scholar 

  30. Dubey, R., Ni, B., Moulin, P.: A depth camera based fall recognition system for the elderly, pp. 137–142. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  31. Dubois, A., Charpillet, F.: Human activities recognition with RGB-depth camera using HMM. In The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4666–4669) (2013)

    Google Scholar 

  32. Patsadu, O., Nukoolkit, C., Watanapa, B.: Human gesture recognition using Kinect camera. In The 9th International Joint Conference on Computer Science and Software Engineering (pp. 28–32) (2012)

    Google Scholar 

  33. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Progr. Biomed. 117, 489–501 (2014)

    Article  Google Scholar 

  34. Ren, Y., Zhang, W.: 3D depth image analysis for indoor fall detection of elderly people. Digital Commun. Netw. 2, 24–34 (2016)

    Article  Google Scholar 

  35. Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a Kinect® sensor. Sensors 14, 2756–2775 (2014)

    Article  Google Scholar 

  36. Lun, R., Zhao, W.: A survey of applications and human motion recognition with microsoft Kinect. Int. J. Pattern Recognit. Artif. Intell. 29, 1–48 (2015)

    Article  Google Scholar 

  37. Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the microsoft Kinect. IEEE J. Biomed. Health Inform. 19, 290–301 (2015)

    Article  Google Scholar 

  38. Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemed. Appl. (2015). https://doi.org/10.1155/2015/576364

    Article  Google Scholar 

  39. Ravì, D., Wong, C., Lo, B., Yang, G.-Z.: A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health Inform. 21, 56–64 (2017)

    Article  Google Scholar 

  40. Wu, T., Wu, F., Redouté, J.-M., Yuce, M.R.: An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access. 5, 11413–11422 (2017)

    Article  Google Scholar 

  41. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access. 5, 26521–26544 (2017)

    Article  Google Scholar 

  42. Tseng, H.-T., Hwang, H.-G., Hsu, W.-Y., Chou, P.-C., Chang, I.-C.: IoT-based image recognition system for smart home-delivered meal services. Symmetry (2017). https://doi.org/10.3390/sym9070125

    Article  Google Scholar 

  43. Dziak, D., Jachimczyk, B., Kulesza, W. J.: IoT-Based information system for healthcare application: design methodology approach. Appl. Sci. (2017). https://doi.org/10.3390/app7060596

    Article  Google Scholar 

  44. Alam, M.M., Malik, H., Khan, M.I., Pardy, T., Kuusik, A., Le Moullec, Y.: A survey on the roles of communication technologies in ioT-based personalized healthcare applications. IEEE Access. 6, 36611–36631 (2018)

    Article  Google Scholar 

  45. Chae, S.-H., Moon, D., Lee, D.-G., Pan S.-B.: Medical image segmentation for mobile electronic patient charts using numerical modeling of IoT. J. Appl. Mathemat. (2014) https://doi.org/10.1155/2014/815039

    Article  Google Scholar 

  46. Bourke, A.K., Van de Ven, P., Gamble, M., O’Connor, R., Murphy, K., Bogan, E.: Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. J. Biomech. (2010). https://doi.org/10.1016/j.jbiomech.2010.07.005

    Article  Google Scholar 

  47. Steven, S.: The scientist and engineer’s guide to digital signal processing. California Technical Publishing, San Diego, California (1999)

    Google Scholar 

  48. Panagiota, B., Mario, P.: Image processing: the funadamentals, 2nd edn. Wiley, New York (2010)

    Google Scholar 

  49. Smith, L.: A tutorial on principal components analysis. Cornell University, USA (2002)

    Google Scholar 

  50. Thanh-Hai, N., Ty-Phu, P., Cuong, N., Thanh-Tam, N.: A SVM algorithm for investigation of tri-accelerometer based falling data. Am. J. Sign. Process. 6, 56–65 (2016)

    Google Scholar 

  51. Thanh-Hai, N., Hoai-An, T.: PCA-SVM algorithm for classification of skeletal data-based eigenpostures. Am. J. Biomed. Eng. 6, 147–158 (2016)

    Google Scholar 

  52. Lipo, W.: Support vector machines: theory and applications. Springer, Berlin, Heidelberg (2005)

    MATH  Google Scholar 

  53. Tong, W., Alan, E.: Support vector machine lagrange multipliers and simplex, vol. Decompositions. Massachusetts Institute of Technology, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support the HCMC University of Technology and Education, Vietnam. In addition, we would like to thank you master students for supports in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Hai Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, TH., Nguyen, TT., Ngo, BV. (2020). A SVM Algorithm for Falling Detection in an IoTs-Based System. In: Balas, V., Solanki, V., Kumar, R., Ahad, M. (eds) A Handbook of Internet of Things in Biomedical and Cyber Physical System. Intelligent Systems Reference Library, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-030-23983-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23983-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23982-4

  • Online ISBN: 978-3-030-23983-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics