Skip to main content

Targeting Hsp-90 Related Disease Entities for Therapeutic Development

  • Chapter
  • First Online:
Book cover Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

Heat shock protein 90 (HSP-90) has been identified in many disease processes including cancer, neurodegeneration, autoimmune diseases, and cancers. Great effort has been expended in the development of specific inhibitors of the N-terminal and C-terminal domains. Inhibitors of post-translational modification have also been developed. Herein, we explore the available inhibitors and those in development, discuss the relevant disease processes, and examine the pitfalls and promises of targeting HSP-90 for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

Tanespimycin

ADME:

absorption, distribution, metabolism, excretion

AKT:

protein kinase B

b-RAF:

B-Raf proto-oncogene

c-RAF:

RAF proto-oncogene serine/threonine-protein kinase

CTD:

C-terminal domain

DMAG:

17-dimethylaminoethylamino-17-demethoxygeldanamycin

ER:

endoplasmic reticulum

FKBP:

FK506 binding protein

FLT:

Fms-like tyrosine kinase

GBase:

glucocerebrosidase

HDAC:

histone deacetylase

HDACI:

HDAC inhibitor

HER:

human epidermal growth factor receptor

HIF:

hypoxia inducible factor

HOP:

HSP70-HSP90 organizaing protein

HSF:

heat shock factor

HSP:

heat shock protein

HTT:

huntington protein

IKK:

IkB kinase

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinases

NF-kB:

nuclear factor kappa light-chain enhancer of activated B cells

Nrf:

nuclear factor erythroid 2-related factor

NTD:

N-terminal domain

RAF:

rapidly accelerated fibrosarcoma

RASGRP:

RAS guanyl-releasing protein

SAHA:

suberoyl anilide hydroxamic acid

STAT:

signal transducer and activators of transcription

TPR:

tetraotricopeptide repeat

VEGFR:

vascular endothelial growth factor receptor

References

  • Allan RK, Mok D, Ward BK et al (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 281:7161–7171

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15(11):565–567

    Article  CAS  PubMed  Google Scholar 

  • Baldo B, Weiss A, Bibel M et al (2012) A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J Biol Chem 287:1406–1414

    Article  CAS  PubMed  Google Scholar 

  • Bali P, George P, Cohen P et al (2004) Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human AML cells with mutant FLT-3. Clin Cancer Res 10:4991–4997

    Article  CAS  PubMed  Google Scholar 

  • Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15:9–14

    Article  CAS  PubMed  Google Scholar 

  • Barrott JJ, Haystead TA (2013) HSP90, an unlikely ally in the war on cancer. FEBS J 280(6):1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Beliakoff J, Whitesell L (2004) Hsp90: an emerging target for breast cancer therapy. Anti-Cancer Drugs 15:651–662

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Diedrich D, Frieg B et al (2018) Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood 132(3):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyault C, Zhang Y, Fritah S et al (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21:2172–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady RO, Kanfer JN, Bradley RM et al (1966) Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J Clin Invest 45:1112–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner J (1999) Hsp90 & co. – a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  • Burlison J, Neckers L, Smith AB et al (2006) Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of Hsp90. JACS 128(48):15529–15536

    Article  CAS  Google Scholar 

  • Chai RC, Vieusseux JL, Lang BJ et al (2017) Histone deacteylase activity mediates acquired resistance towards structurally diverse hsp90 inhibitors. Mol Oncol 11(5):567–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiosis G, Timaul MN, Lucas B et al (2001) Small molecule designed to bind to the adenine nucleotide pocket of HSP-90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8(3):289–299

    Article  CAS  PubMed  Google Scholar 

  • DeBoer C, Meulman PA, Wnuk RJ et al (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447

    Article  CAS  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson MA, Okuno SH, Keohan ML et al (2012) Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol: Off J Eur Soc Med Oncol 24(1):252–257

    Article  Google Scholar 

  • Ding H, Peterson KL, Correia C et al (2017) Histone deacetylase inhibitors interrupt HSP90-CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells. Leukemia 31(7):1593–1602

    Article  CAS  PubMed  Google Scholar 

  • Donnelly A, Blagg B (2008) Novobiocin and additional inhibitors of Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duerfeldt A, Blagg B (2010) Hsp90 inhibition: elimination of shock and stress. Bioorg Med Chem Lett 20(17):4983–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elfiky A, Saif MW, Beeram M et al (2008) BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J Clin Oncol 26:2503

    Article  Google Scholar 

  • Eskew JD, Sadikot T, Morales P et al (2011) Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer 11:468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiskus W, Ren Y, Mohapatra A et al (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13:4882–4890

    Article  CAS  PubMed  Google Scholar 

  • Goetz MP, Toft DO, Ames MM et al (2003) The HSP90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14(8):1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Igbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15:2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goode KM, Petrov DP, Vickman RE et al (2017) Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation. Biochim Biophys Acta 1861:1992–2006

    Article  CAS  Google Scholar 

  • Gormley N, Orphanides G, Meyers A et al (1996) The interaction of coumarin antibiotics with dragments of DNA gyrase B. Biochemistry 3:5083–5092

    Article  Google Scholar 

  • Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol (Berl) 133:665–704

    Article  CAS  Google Scholar 

  • Hoter A, El-Sabban M, Naim H (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:1–33

    Google Scholar 

  • Hruska K, LaMarca M, Scott C et al (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29:567–583

    Article  CAS  PubMed  Google Scholar 

  • Jackson SE (2012) Hsp90: structure and function. In: Jackson S (ed) Molecular chaperones, Topics in current chemistry, vol 328. Springer, Berlin

    Chapter  Google Scholar 

  • Jhaveri K, Modi S (2012) HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol 65:471–517

    Article  CAS  PubMed  Google Scholar 

  • Karagoz G, Duarte A, Akoury E et al (2014) Hsp90-tau complex reveals molecular basis for specificity in chaperone action. Cell 156:963–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasperkiewicz M, Müller R, Manz R et al (2011) Heat-shockprotein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 117(23):6135–6142

    Article  CAS  PubMed  Google Scholar 

  • Kekapure V, Dannenberg A, Subbaramaiah K (2009) HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem 284:7436–7445

    Article  CAS  Google Scholar 

  • Koay YC, Wahyudi H, McAlpine SR (2016) Reinventing HSP90 inhibitors: blocking C-terminal binding events to HSP90 by using dimerized inhibitors. Chem Eur J 22:18572–11858

    Article  CAS  PubMed  Google Scholar 

  • Kovacs J, Murphy P, Gaillard S et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  CAS  PubMed  Google Scholar 

  • Lackie R, Maciejewski A, Ostapchenko V et al (2017) The HSP70/HSP90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:1–23

    Article  Google Scholar 

  • Lazaro I, Oguiza A, Recio C et al (2015) Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-κB and STAT signaling pathways in diabetic mice. Diabetes 64(10):3600–3613

    Article  CAS  PubMed  Google Scholar 

  • Lazaro I, Oguiza A, Recio C et al (2017) Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis. Clin Investig Arterioscler 29(2):51–59

    PubMed  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Gao J, Kosinski PA, Elliman SJ et al (2013) Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun 430(3):1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Romeo G, Kazlauskas A (2004) Heat shock protein-90α-dependent translocation of annexin II to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ Res 94:902–909

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Vielhauer GA, Holzbeierlein JM et al (2015) KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90α in prostate cancer cells. Mol Pharmacol 88(1):121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Sun W, Taldone T et al (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:1–8

    Article  CAS  Google Scholar 

  • Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM et al (2010) Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 86:330–337

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim S, Choi M, Lee J et al (2008) Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem Biophys Res Commun 368:318–322

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Rose SM, O’Brien R et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the HSP-90 molecular chaperone. Cell 90(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Regna N, Vieson M, Gojmerac A et al (2015) HDAC expression and activity is upregulated in diseased lupus-prone mice. Int Immunopharmacol 29:494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice JW, Veal JM, Fadden RP et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58(12):3765–3775

    Article  CAS  PubMed  Google Scholar 

  • Roe M, Wahab B, Torok Z et al (2018) Dihydropyridines allosterically modulate Hsp90 providing a novel mechanism for heat shock protein co-induction and neuroprotection. Front Mol Biosci 5(51):1–14

    CAS  Google Scholar 

  • Ron I, Horowitz M (2005) ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 14(16):2387–2398

    Article  CAS  PubMed  Google Scholar 

  • Russo CD, Polak PE, Mercado PR et al (2006) The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 99(5):1351–1362

    Article  CAS  Google Scholar 

  • Schopf F, Biebl M, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  CAS  PubMed  Google Scholar 

  • Schwock J, Pham NA, Cao MP et al (2008) Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Cancer Chemother Pharmacol 61:669–681

    Article  CAS  PubMed  Google Scholar 

  • Scroggins BT, Robzyk K, Wang D et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton L, Koren J, Blair L (2017) Imbalances in the Hsp90 chaperone machinery: implications for Tauopathies. Front Neurosci 11:1–12

    Article  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sittler A, Lurz R, Lueder G et al (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Solárová Z, MojžiÅ¡ J, Solár P (2015) Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 46:907–926

    PubMed  Google Scholar 

  • Speranza G, Anderson L, Chen AP et al (2018) First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Investig New Drugs 36(2):230–239

    Article  CAS  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C et al (1997) Crystal structure of an HSP90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 18(2):239–250

    Article  Google Scholar 

  • Stirnemann J, Belmatoug N, Camou F et al (2017) A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci 18(2):441

    Article  CAS  PubMed Central  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Terracciano S, Russo A, Chini MG et al (2018) Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain. Sci Rep 8:1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tukaj S, Zillikens D, Kasperkiewicz M (2015) Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 24:567–571

    Article  CAS  PubMed  Google Scholar 

  • Wandinger S, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473–18477

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xie C, Greggio E et al (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2J. Neurosciences 28:3384–3391

    CAS  Google Scholar 

  • Wang Z, Hu P, Tang F et al (n.d.) HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett 379:134–142

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Linquist S (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Rahimpour S, Lu J et al (2013) Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proc Natl Acad Sci U S A 110:966–971

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Guo ZS, Marcu MG et al (2002) J Natl Cancer Inst 94:504–513

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499

    CAS  PubMed  Google Scholar 

  • de Zoeten E, Wang L, Butler K et al (2011) Histone deacetylase 6 and heat shock protein 90 control the functions of foxp3+ T-regulatory cellsMol. Cell Biol 31:2066–2078

    Google Scholar 

  • Zou JY, Guo YL, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared S. Rosenblum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westlake, T., Sun, M., Rosenblum, B.C., Zhuang, Z., Rosenblum, J.S. (2019). Targeting Hsp-90 Related Disease Entities for Therapeutic Development. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_10

Download citation

Publish with us

Policies and ethics