Skip to main content

Special Relativity in Immersive Learning

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1044))

Abstract

In this paper, we discuss our development, implementation and evaluation of an interactive, real-time, and real-scale virtual reality application used to understand the theory of special relativity. Since special relativity deals with non-trivial counter-intuitive subjects such as the twin paradox and the Lorentz contraction, we utilize an immersive VR experience to visualize these phenomena. In doing so, we attempt to teach the theory of special relativity in a manner different than conventional abstract methods. In this study, we tested a set of participants and examined their understanding of special relativity theory before and after engaging with the VR experience. Using the results, we inspected for any correlations between their perceived immersion during and after the simulation and their acquisition of special relativity theory.

Our study has shown that visualizing the phenomena of special relativity in VR led to high immersion among participants and increased knowledge about the theory of special relativity. With this work, we hope to build upon the collective knowledge about the effects of learning in a strong, visually pronounced, and highly immersive environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Einstein, A.: Relativity: The Special and General Theory, 1999th edn. Methuen & Co. Ltd., London (1924)

    MATH  Google Scholar 

  2. Scherr, R., Shaffer, P., Vokos, S.: Student understanding of time in special relativity: simultaneity and reference frames. Am. J. Phys. 69 (2002). https://doi.org/10.1119/1.1371254

    Article  Google Scholar 

  3. Gamow, G.: Mr Tompkins in Wonderland. Macmillan (1940). https://dl.acm.org/citation.cfm?id=1124834

  4. Pan, Z., Cheok, A.-D., Yang, H., Zhu, J., Shi, J.: Virtual reality and mixed reality for virtual learning environments. Universiti Teknologi Malaysia (UTM) (2006)

    Google Scholar 

  5. Kondo, K.: Augmented Learning Environment using Mixed Reality Technology. National Institute of Multimedia Education (2006)

    Google Scholar 

  6. Abdoli-Sejzi, A.: Augmented reality and virtual learning environment. Comput. Graph. 30 (2015)

    Google Scholar 

  7. Adams, W., et al.: A study of educational simulations Part I - engagement and learning. J. Interact. Learn. Res. 19, 397–419 (2008)

    Google Scholar 

  8. Hong, R.: Immersion in reading and film as a function of personality. BSc thesis, Department of Psychology, University College London, U (2006)

    Google Scholar 

  9. Mermin, N.-D.: Lapses in relativistic pedagogy. Am. J. Phys. 62, 11 (1994)

    Article  Google Scholar 

  10. Einstein, A.: On the electrodynamics of moving bodies. Annalen der Physik 17(10), 891 (1905). (End of ß4)

    Article  Google Scholar 

  11. Dalarsson, M., Dalarsson, N.: Tensors, Relativity, and Cosmology, pp. 106–108. Academic Press, Boston (2015)

    Chapter  Google Scholar 

  12. Lorentz, H.-A.: The relative motion of the earth and the aether. Zittingsverlag Akad. V. Wet. 1, 74–79 (1892)

    Google Scholar 

  13. Belloni, M., Christian, W., Darcy, M.-H.: Teaching special relativity using physlets. Phys. Teach. 42, 284–290 (2004)

    Article  Google Scholar 

  14. Horwitz, P., Taylor, E.-F., Hickman, P.: Relativity readiness’ using the RelLab program. Phys. Teach. 32, 81–86 (1994)

    Article  Google Scholar 

  15. Carr, D., Bossomaier, T., Lodge, K.: Designing a computer game to teach Einstein’s theory of relativity. In: Computer Graphics, Imaging and Visualisation, pp. 109–114 (207)

    Google Scholar 

  16. Weiskopf, D., et al.: Explanatory and illustrative visualization of special and general relativity. IEEE Trans. Vis. Comput. Graph. 12, 522–534 (2006)

    Article  Google Scholar 

  17. Taylor, E.-F.: Space-time software: computer graphics utilities in special relativity. Am. J. Phys. 57, 508–514 (1989)

    Article  Google Scholar 

  18. De Hosson, C., Doat, T., Kermen, I., Vézien, J.-M.: Designing learning scenarios for a 3D virtual environment: the case of special relativity. Lat. Am. J. Phys. Educ. 1 (2012)

    Google Scholar 

  19. De Hosson, C, Kermen, I., Maisch, C., Parizot, E., Doat, T., Vézien, J.-M.: Learning scenario for a 3D virtual environment: the case of Special Relativity. HAL (2014). https://hal.archives-ouvertes.fr/hal-01663423

  20. Savage, C., Searle, A., McCalman, L.: Real time reality: exploratory learning of special relativity. Am. J. Phys. 75 (2007). https://doi.org/10.1119/1.2744048

    Article  Google Scholar 

  21. McGrath, D., Wegener, M., McIntyre, T.-J., Savage, C., Williamson, M.: Student experiences of virtual reality: a case study in learning special relativity. Am. J. Phys. 78 (2010). https://doi.org/10.1119/1.3431565

    Article  Google Scholar 

  22. McGrath, D., Savage, C., Williamson, M., Wegener, M., McIntyre, T.: Teaching Special Relativity Using Virtual Reality. The University of Queensland (2008)

    Google Scholar 

  23. Jennett, C., et al.: Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud. 66, 641–661 (2008)

    Article  Google Scholar 

  24. Cairns, P., Cox, A.-L., Nordin, A.-I.: Immersion in digital games: review of gaming experience research. In: Angelides, M.C., Agius, H. (eds.) Handbook of Digital Games, pp. 337–361. Wiley, Hoboken (2014)

    Chapter  Google Scholar 

  25. Chinta, R.: Measurements of Game Immersion through Subjective Approach. urn:nbn:se:bth-14825 (2012)

    Google Scholar 

  26. Cox, A., Cairns, P., Bianchi-Berthouze, N., Jennett, C.: The Use of Eyetracking for Measuring Immersion (2019)

    Google Scholar 

  27. Hafele, J.-C., Keating, R.-E.: Around-the-world atomic clocks: predicted relativistic time gains. Science 177(4044), 166–168 (1972)

    Article  Google Scholar 

  28. IJsselsteijn, W.-A., de Kort, Y.-A.-W., Poels, K.: The Game Experience Questionnaire. Technische Universiteit Eindhoven (2013)

    Google Scholar 

  29. Eckhardt, C: From Minkowski to Lorentz, a crash course in SRT. Youtube (2019). https://www.youtube.com/watch?v=tPM1k5UO6Fo

  30. Sowa, T.: Bignum C++ library (2015). https://www.ttmath.org/

  31. Mallinckrodt, A.-J.: Relativity theory versus the Lorentz transformations. Am. J. Phys. 61, 760 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, G., Humer, I., Eckhardt, C. (2019). Special Relativity in Immersive Learning. In: Beck, D., et al. Immersive Learning Research Network. iLRN 2019. Communications in Computer and Information Science, vol 1044. Springer, Cham. https://doi.org/10.1007/978-3-030-23089-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23089-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23088-3

  • Online ISBN: 978-3-030-23089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics