Skip to main content

CIGS Thin Film Photovoltaic—Approaches and Challenges

  • Chapter
  • First Online:
High-Efficient Low-Cost Photovoltaics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 140))

Abstract

After a short overview of the historical development of the Cu(In, Ga)Se2 (CIGS) thin film solar cell and its special features, we give an overview of the deposition and optimization of the p-type CIGS absorber as well as the subsequent n-type buffer layer and the molybdenum back contact. Developments to increase efficiency by optimizing the implemented bandgap grading via the local gallium content as well as the specific doping of the CIGS absorber by means of various alkali elements deepen the understanding. Finally, modern approaches to monolithic cell interconnection are discussed, e.g. via the use of modern ultra-short pulse lasers. Numerous literature references enable the reader to gain an even deeper insight if required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    RoHS: Acronym for Restriction on the use of certain Hazardous Substances.

References

  1. H. Hahn, G. Frank, W. Klingler, A.-D. Meyer, G. Störger, Untersuchungen über ternäre Chalkogenide. Über einige ternäre Chalkogenide mit Chalkopyritstruktur. Zeitschrift für anorganische und allgemeine Chemie, Band 271, 153–170 (1953)

    Google Scholar 

  2. S. Wagner, J.L. Shay, P. Migliorato, CulnSe2/CdS heterojunction photovoltaic detectors. Appl. Phys. Lett. 25, 434 (1974). https://doi.org/10.1063/1.1655537

    Article  ADS  Google Scholar 

  3. S. Wagner, J. Shay, H. Kasper, The p-CuInSe2/n-CdS Heterodiode: photovoltaic detector, solar cell and light emitting diode. J. Phys. Colloq. 36(C3), C3-101–C3-104 (1975). https://doi.org/10.1051/jphyscol:1975319. jpa-00216289

  4. L.L. Kazmerski, F.R. White, G.K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett. 29, 268 (1976). https://doi.org/10.1063/1.89041

    Article  ADS  Google Scholar 

  5. R.A. Mickelsen, W.S. Chen, Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell, in Conference Record of the IEEE Photovoltaic Specialists Conference, Proceedings of the Fifteenth IEEE Photovoltaic Specialists Conference (Kissimmee, FL, 1981), pp. 800–804

    Google Scholar 

  6. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004). https://doi.org/10.1002/pip.541

  7. R.L. Mitchell, C.E. Witt, R. King, D. Ruby, PVMaT advances in the photovoltaic industry and the focus of future PV manufacturing R&D. in Conference Record of the 29th IEEE Photovoltaic Specialists Conference (IEEE, New Orleans, Louisiana, 2002), pp. 1444–1447

    Google Scholar 

  8. A. Jasenek, U. Rau, T. Hahn, G. Hanna, M. Schmidt, M. Hartmann, H.W. Schock, J.H. Werner, B. Schattat, S. Kraft, K.-H. Schmid, W. Bolse, Defect generation in polycrystalline Cu(In,Ga)Se2 by high-energy electron irradiation. Appl. Phys. A 70, 677–680 (2000). https://doi.org/10.1007/s003390000512

  9. S. Dabbabi, T.B. Nasr, N.T. Kamoun, CIGS solar cells for space applications: numerical simulation of the effect of traps created by high-energy electron and proton irradiation on the performance of solar cells. JOM, Miner. Metals Mater. Soc. (2018). https://doi.org/10.1007/s11837-018-2748-9

    Article  Google Scholar 

  10. J. Ramanujam, U.P. Singh, Copper indium gallium selenide based solar cells—a review. Energy Environ. Sci. 10, 1306–1319 (2017). https://doi.org/10.1039/c7ee00826k

    Article  Google Scholar 

  11. H. Neumann, N. Van Nam, H.-J. Hobler, G. Kuhn, Electrical properties of n-TYPE CuInSe2 single crystals. Solid State Commun. 25, pp. 899–902 (1978)

    Google Scholar 

  12. M. Igalson, A. Urbaniak, K. Macielak, M. Tomassini, N. Barreau, S. Spiering, Barriers for current transport in CIGS structures, in Conference Record of the IEEE Photovoltaic Specialists Conference (2011). https://doi.org/10.1109/pvsc.2011.6186511

  13. T. Wada, N. Kohara, T. Negami, M. Nishitani, Chemical and structural characterization Cu(In,Ga)Se2/Mo in Cu(In,Ga)Se2 solar cells. Jpn. J. Appl. Phys. 35, 1253 (1996)

    ADS  Google Scholar 

  14. H.-W. Schock, U. Rau, The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells. Phys. B 308–310, 1081–1085 (2001)

    ADS  Google Scholar 

  15. B.J. Stanbery, Copper indium selenides and related materials for photovoltaic devices. Crit. Rev. Solid State Mater. Sci. 27(2), 73–117 (2002). https://doi.org/10.1080/20014091104215

    Article  ADS  Google Scholar 

  16. N.G. Dhere, Present status and future prospects of CIGSS thin film solar cells. Sol. Energy Mater. Sol. Cells 90, 2181–2190 (2006)

    Google Scholar 

  17. H.-W. Schock, R. Noufi, Prog. Photovolt.: Res. Appl. 8, 151 (2000)

    Google Scholar 

  18. R. Klenk, Thin Solid Films 387, 135–140 (2001)

    ADS  Google Scholar 

  19. M. Turcu, U. Rau, Fermi level pinning at CdS/Cu(In, Ga)(Se, S)2 interfaces: effect of chalcopyrite alloy composition. J. Phys. Chem. Solids 64, 1591–1595 (2003)

    ADS  Google Scholar 

  20. C.H. Chang, A. Davydov, B.J. Stanbery, T.J. Anderson, Thermodynamic assessment of the Cu-In-Se system and application to thin film photovoltaics, in The Conference Record of the 25th IEEE Photovoltaic Specialists Conference (IEEE, Piscataway, 1996), p. 849

    Google Scholar 

  21. H.-W. Schock, Properties of chalcopyrite-based materials thin-film solar cells, in Thin-Film Solar Cells, Next Generation Photovoltaics and Its Applications, ed. by Y. Hamakawa (Springer, Berlin, Heidelberg, New York, 2004)

    Google Scholar 

  22. T. Gödecke, T. Haalboom, F. Ernst, Phase Equilibria of Cu-In-Se. Z. Metallkd. 91, 622–662 (2000)

    Google Scholar 

  23. M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi, Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells. Prog. Photovolt: Res. Appl. 13, 209–216 (2005). https://doi.org/10.1002/pip.626

    Article  Google Scholar 

  24. M. Kemell, M. Ritala, M. Leslkelä, Thin film deposition methods for CuInSe2 solar cells. Crit. Rev. Solid State Mater. Sci. 30(1), 1–31 (2005). https://doi.org/10.1080/10408430590918341

    Article  ADS  Google Scholar 

  25. S.B. Zhang, S.H. Wei, A. Zunger, H. Katayama-Yoshida, Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642 (1998)

    ADS  Google Scholar 

  26. M. Malitckaya, H.-P. Komsa, V. Havu, M.J. Puska, First-principles modeling of point defects and complexes in thin-film solar-cell absorber CuInSe2. Adv. Electron. Mater. 3, 1600353 (2017)

    Google Scholar 

  27. J. Pohl, K. Albe, Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory. Phys. Rev. B 87, 245203 (2013)

    ADS  Google Scholar 

  28. C. Persson, Y.-J. Zhao, S. Lany, A. Zunger, n-type doping of CuInSe2 and CuGaSe2. Phys. Rev. B 72, 035211 (2005)

    ADS  Google Scholar 

  29. S. Siebentritt, M. Igalson, C. Persson, S. Lany, The electronic structure of chalcopyrites—bands, point defects and grain boundaries. Prog. Photovolt: Res. Appl. 18, 390–410 (2010). https://doi.org/10.1002/pip.936

    Article  Google Scholar 

  30. S. Siebentritt, Chalcopyrite compound semiconductors for thin film solar cells. Curr. Opin. Green Sustain. Chem. 4, 1–7 (2017). https://doi.org/10.1016/j.cogsc.2017.02.001

    Article  Google Scholar 

  31. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

  32. S. Rühle, Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015

    Article  ADS  Google Scholar 

  33. G. Hanna, A. Jasenek, U. Rau, H.W. Schock, Influence of Ga-content on the bulk defect densities of Cu(In, Ga)Se2. Thin Solid Films 387, 71–73 (2001)

    ADS  Google Scholar 

  34. U. Rau, M. Schmidt, A. Jasenek, G. Hanna, H.W. Schock, Electrical characterization of Cu(In, Ga)Se2 thin-film solar cells and the role of defects for the device performance. Sol. Energy Mater. Sol. Cells 67, 137–143 (2001)

    Google Scholar 

  35. P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, G. Bilger, J.H. Werner, High quality baseline for high efficiency, Cu(In1-x, Gax)Se2 solar cells. Prog. Photovolt. Res. Appl. 15, 507–519 (2007). https://doi.org/10.1002/pip.757

    Article  Google Scholar 

  36. M.A. Contreras, L.M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, W. Mannstadt, Wide bandgap Cu(In, Ga)Se2 solar cells with improved energy conversion efficiency. Prog. Photovolt: Res. Appl. 20, 843–850 (2012). https://doi.org/10.1002/pip.2244

    Article  Google Scholar 

  37. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10(8), 583–586 (2016). https://doi.org/10.1002/pssr.201600199

  38. V. Bermudez, A. Perez-Rodriguez, Understanding the cell-to-module efficiency gap in Cu(In, Ga)(S, Se)2 photovoltaics scale-up. Nat. Energy 3, 466–475 (2018)

    ADS  Google Scholar 

  39. H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, A. Yamada, New world-record efficiency for pure-sulfide Cu(In, Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE J. Photovolt. 6(3), 760–763 (2016)

    Google Scholar 

  40. K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Bräunig, Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol. Energy Mater. Sol. Cells 67, 159–166 (2001)

    Google Scholar 

  41. F. Larsson, N.S. Nilsson, J. Keller, C. Frisk, V. Kosyak, M. Edoff, T. Törndahl, Record 1.0 V open-circuit voltage in wide band gap chalcopyrite solar cells. Prog. Photovolt. Res. Appl. 25, 755–763 (2017). https://doi.org/10.1002/pip.2914

  42. H. Goto, Y. Hashimoto, K. Ito, Efficient thin film solar cell consisting of TCO/CdS/CuInS2/CuGaS2 structure. Thin Solid Films 451–452, 552–555 (2004). https://doi.org/10.1016/j.tsf.2003.11.045

    Article  Google Scholar 

  43. M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi, High efficiency Cu(ln,Ga)Se2-based solar cells: processing of novel absorber structures, in Proceedings 1st World Conference on Photovoltaic Energy Conversion (IEEE, Piscataway, NJ, 1994), p. 68

    Google Scholar 

  44. T. Dullweber, G. Hanna, U. Rau, H.W. Schock, A new approach to high-efficiency solar cells by band gap grading in Cu(In, Ga)Se2 chalcopyrite semiconductors. Sol. Energy Mater. Sol. Cells 67, 145–150 (2001)

    Google Scholar 

  45. Y. Hahsimoto, N. Kohara, T. Negami, M. Nishitani, T. Wada, Surface characterization of chemically treated Cu(In, Ga)Se2 thin films. Jpn. J. Appl. Phys. 35, 4760–4764 (1996)

    ADS  Google Scholar 

  46. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt: Res. Appl. 11, 225–230 (2003). https://doi.org/10.1002/pip.494

  47. E. Avancini, R. Carron, B. Bissig, P. Reinhard, R. Menozzi, G. Sozzi, S. Di Napoli, T. Feurer, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells. Prog. Photovolt: Res. Appl. (2016). https://doi.org/10.1002/pip.2850

    Article  Google Scholar 

  48. A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011)

    ADS  Google Scholar 

  49. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, CIGS absorbers and processes. Prog. Photovolt: Res. Appl. 18, 453–466 (2010). https://doi.org/10.1002/pip.969

    Article  Google Scholar 

  50. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi RRL 9(1), 28–31 (2015). https://doi.org/10.1002/pssr.201409520

  51. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12, 1107–1111 (2013). https://doi.org/10.1038/NMAT3789

    Article  ADS  Google Scholar 

  52. M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, W. Wischmann, High-efficiency Cu(In, Ga)Se2 cells and modules. Sol. Energy Mater. Sol. Cells 119, 51–58 (2013)

    Google Scholar 

  53. P.M.P. Salomé, V. Fjällström, P. Szaniawski, J.P. Leitão, A. Hultqvist, P.A. Fernandes, J.P. Teixeira, B.P. Falcão, U. Zimmermann, A.F. da Cunha, M. Edoff, A comparison between thin film solar cells made from co-evaporated CuIn1-xGaxSe2 using a one-stage process versus a three-stage process. Prog. Photovolt: Res. Appl. 23, 470–478 (2015). https://doi.org/10.1002/pip.2453

    Article  Google Scholar 

  54. M. Powalla, B. Dimmler, Scaling up issues of CIGS solar cells. Thin Solid Films 361–362, 540–546 (2000)

    ADS  Google Scholar 

  55. R. Scheer, A. Pérez-Rodríguez, W.K. Metzger, Advanced diagnostic and control methods of processes and layers in CIGS solar cells and modules. Prog. Photovolt: Res. Appl. 18, 467–480 (2010)

    Google Scholar 

  56. V.K. Kapur, U.V. Choudary, A.K. P. Chu, US patent no. 4,581,108 (1986)

    Google Scholar 

  57. V. Probst, W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.-D. Ufert, B. Freienstein, H. Cerva, F.H. Karg, Rapid CIS-process for high efficiency PV-modules: development towards large area processing. Thin Solid Films 387, 262–267 (2001)

    Google Scholar 

  58. T. Kato, Cu(In,Ga)(Se,S)2 solar cell research in solar Frontier: progress and current status. Jpn. J. Appl. Phys. 56, 04CA02 (2017). https://doi.org/10.7567/jjap.56.04ca02

  59. G.D. Mooney, A.M. Hermann, J.R. Tuttle, D.S. Albin, R. Noufi, Formation of CuInSe2 thin films by rapid thermal recrystallization. Appl. Phys. Lett. 58, 2678 (1991). https://doi.org/10.1063/1.104805

    Article  ADS  Google Scholar 

  60. J.A. Frantz, J.D. Myers, R.Y. Bekele, V.Q. Nguyen, B.M. Sadowski, S.I. Maximenko, R.J. Walters, J.S. Sanghera, Recent progress in sputtered Cu(In,Ga)Se2 absorbers for photovoltaics. https://www.researchgate.net/publication/282960353, https://doi.org/10.1364/noma.2015.ns3b.2

  61. C.-H. Chen, W.-C. Shih, C.-Y. Chien, C.-H. Hsu, Y.-H. Wua, C.-H. Lai, A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In, Ga)Se2 absorbers without extra Se supply. Sol. Energy Mater. Sol. Cells 103, 25–29 (2012)

    Google Scholar 

  62. Y.-C. Wang, H.-P.D. Shieh, Double-graded bandgap in Cu(In, Ga)Se2 thin film solar cells by low toxicity selenization process. Appl. Phys. Lett. 105, 073901 (2014). https://doi.org/10.1063/1.4893713

    Article  ADS  Google Scholar 

  63. F. Karg, High efficiency CIGS solar modules. Energy Procedia 15, 275–282 (2012)

    Google Scholar 

  64. S.S. Schmidt, C. Wolf, H. Rodriguez-Alvarez, J.-P. Bäcker, C.A. Kaufmann, S. Merdes, F. Ziem, M. Hartig, S. Cinque, I. Dorbandt, C. Köble, D. Abou-Ras, R. Mainz, R. Schlatmann, Adjusting the Ga grading during fast atmospheric processing of Cu(In, Ga)Se2 solar cell absorber layers using elemental selenium vapor. Prog. Photovolt: Res. Appl. 25, 341–357 (2017). https://doi.org/10.1002/pip.2865

    Article  Google Scholar 

  65. T. Kobayashi, H. Yamaguchi, Z.J.L. Kao, H. Sugimoto, T. Kato, H. Hakuma, T. Nakada, Impacts of surface sulfurization on Cu(In1_x, Gax)Se2 thin-film solar cells. Prog. Photovolt: Res. Appl. 23, 1367–1374 (2015). https://doi.org/10.1002/pip.2554

    Article  Google Scholar 

  66. N.B. Chaure, Electrodeposited CuIn1-xGaxSe2 thin films from non-aqueous medium for solar cell Applications. J. Renew. Sustain. Energy 5, 031604 (2013). https://doi.org/10.1063/1.4808023

    Article  Google Scholar 

  67. R.N. Bhattocharya, Solution growth and electrodeposited CulnSe2 thin films. J. Electrochem. Soc. 130(10), 2040 (1983)

    ADS  Google Scholar 

  68. A. Kampmann, V. Sittinger, J. Rechid, R. Reineke-Koch, Large area electrodeposition of Cu(In, Ga)Se2. Thin Solid Films 361–362, 309–313 (2000)

    Google Scholar 

  69. S.N. Qiu, L. Li, C.X. Qiu, I. Shih, C.H. Champness, Study of CulnSe2 thin films prepared by electrodeposition. Sol. Energy Mater. Sol. Cells 37, 389–393 (1995)

    Google Scholar 

  70. C. Broussillou, C. Viscogliosi, A. Rogee, S. Angle, P.P. Grand, S. Bodnar, C. Debauche, J.L. Allary, B. Bertrand, C. Guillou, L. Parissi, S. Coletti, Statistical process control for Cu(In,Ga)(S,Se)2 electrodeposition-based manufacturing process of 60 × 120 cm2 modules up to 14,0% efficiency, in Conference Record of the 42nd IEEE Photovoltaic Specialist Conference (2015). https://doi.org/10.1109/pvsc.2015.7356224

  71. S. Aksu, S. Pethe, A. Kleiman-Shwarsctein, S. Kundu, M. Pinarbasi, Recent advances in electroplating based CIGS solar cell fabrication, in Conference Record of the 38th IEEE Photovoltaic Specialist Conference (2012). https://doi.org/10.1109/pvsc.2012.6318235

  72. A.R. Uhl, C. Fella, A. Chirilă, M.R. Kaelin, L. Karvonen, A. Weidenkaff, C.N. Borca, D. Grolimund, Y.E. Romanyuk, A.N. Tiwari, Non-vacuum deposition of Cu(In, Ga)Se2 absorber layers from binder free, alcohol solutions. Prog. Photovolt: Res. Appl. 20, 526–533 (2012). https://doi.org/10.1002/pip.1246

    Article  Google Scholar 

  73. V. Kapur, R. Kemmerle, A. Bansal, J. Haber, J. Schmitzberger, P. Le, D. Guevarra, V. Kapur, T. Stempien, Manufacturing of “ink based” CIGS SOLAR cells/modules, in Conference Record of the 33rd IEEE Photovoltaic Specialist Conference (2008), pp. 1–5. https://doi.org/10.1109/pvsc.2008.4922496

  74. V.K. Kapur, A. Bansal, S. Roth, Roadmap for manufacturing cost competitive CIGS modules, in Conference Record of the 38th IEEE Photovoltaic Specialist Conference (2012), pp. 3343–3348. https://doi.org/10.1109/pvsc.2012.6318289

  75. K.A.W. Horowitz, R. Fu, M. Woodhouse, An analysis of glass-glass CIGS manufacturing costs. Sol. Energy Mater. Sol. Cells 154, 1–10 (2016)

    Google Scholar 

  76. J. Hedström, H. Ohlsén, M. Bodegård, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H. W. Schock, ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, in Conference Record of the 23rd IEEE Photovoltaic Specialists Conference (IEEE, Piscataway, NJ, 1993), pp. 364–371

    Google Scholar 

  77. K. Granath, M. Bodegård, L. Stolt, The effect of NaF on Cu(In, Ga)Se2 thin film solar cells. Sol. Energy Mater. Sol. Cells 60, 279–293 (2000)

    Google Scholar 

  78. D. Rudmann, D. Brémaud, H. Zogg, A.N. Tiwari, Na incorporation into Cu(In, Ga)Se2 for high-efficiency flexible solar cells on polymer foils. J. Appl. Phys. 97, 084903 (2005)

    ADS  Google Scholar 

  79. M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H.W. Schock, Conference Record of the 24th IEEE Photovoltaic Specialists Conference (Waikoloa, Hawaii, 1994), pp. 156–159

    Google Scholar 

  80. R. Wuerz, A. Eicke, F. Kessler, P. Rogin, O. Yazdani-Assl, Alternative sodium sources for Cu(In, Ga)Se2 thin-film solar cells on flexible substrates. Thin Solid Films 519, 7268–7271 (2011)

    ADS  Google Scholar 

  81. W. Thongkham, A. Pankiew, K. Yoodee, S. Chatraphorn, Enhancing efficiency of Cu(In, Ga)Se2 solar cells on flexible stainless steel foils using NaF co-evaporation. Sol. Energy 92, 189–195 (2013)

    ADS  Google Scholar 

  82. H. Stange, S. Brunken, H. Hempel, H. Rodriguez-Alvarez, N. Schäfer, D. Greiner, A. Scheu, J. Lauche, C.A. Kaufmann, T. Unold, D. Abou-Ras, R. Mainz, Effect of Na presence during CuInSe2 growth on stacking fault annihilation and electronic properties. Appl. Phys. Lett. 107, 152103 (2015)

    ADS  Google Scholar 

  83. A. Urbaniak, M. Igalson, F. Pianezzi, S. Buecheler, A. Chirilă, P. Reinhard, A.N. Tiwari, Effects of Na incorporation on electrical properties of Cu(In, Ga)Se2-based photovoltaic devices on polyimide substrates Sol. Energy Mater. Sol. Cells 128, 52–55 (2014)

    Google Scholar 

  84. C. Persson, A. Zunger, Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. Phys. Rev. Lett. 91, 266401 (2003)

    ADS  Google Scholar 

  85. S.H. Wei, S.B. Zhang, A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. J. Appl. Phys. 85, 7214–7218 (1999)

    ADS  Google Scholar 

  86. Z.K. Yuan, S. Chen, Y. Xie, J.S. Park, H. Xiang, X.G. Gong, S.H. Wei, Na-diffusion enhanced p-type conductivity in Cu(In, Ga)Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mat. 6, 1601191 (2016)

    Google Scholar 

  87. O. Cojocaru-Mirédin, T. Schwarz, P.P. Choi, M. Herbig, R. Wuerz, D. Raabe, Atom probe tomography studies on the Cu(In,Ga)Se2 grain boundaries. J. Vis. Exp. (74), e50376. https://doi.org/10.3791/50376 (2013)

  88. M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, R. Noufi, On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin MF (M = Na, K, Cs) precursor layers, in Conference Record of the 26th IEEE Photovoltaic Specialists Conference (Anaheim, California, 30 September–3 October 1997), pp. 359–362

    Google Scholar 

  89. A. Laemmle, R. Wuerz, M. Powalla, Efficiency enhancement of Cu(In, Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride. Phys. Status Solidi RRL 7, 631–634 (2013). https://doi.org/10.1002/pssr.201307238

    Article  Google Scholar 

  90. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%. Phys. Status Solidi RRL 8, 219–222 (2014)

    Google Scholar 

  91. D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, L. Stolt, CIGS module manufacturing with high deposition rates and efficiencies, presented at the IEEE 40th Photovoltaic Specification Conference (Denver, CO, USA, 8–13 June 2014)

    Google Scholar 

  92. K.F. Tai, R. Kamada, T. Yagioka, T. Kato, H. Sugimoto, From 20.9 to 22.3% Cu(In,Ga)(S,Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatment. Jpn. J. Appl. Phys. 56, 08MC03 (2017)

    Google Scholar 

  93. O. Lundberg, E. Wallin, V. Gusak, S. Södergren, S. Chen, S. Lotfi, F. Chalvet, U. Malm, N. Kaihovirta, P. Mende, G. Jaschke, P. Kratzert, J. Joel, M. Skupinski, P. Lindberg, T. Jarmar, J. Lundberg, J. Mathiasson, L. Stolt, Improved CIGS modules by KF post deposition treatment and reduced cell-to-module losses, in 43rd Photovoltaic Specialist Conference (Denver, 2016), pp. 1293–1296

    Google Scholar 

  94. E. Handick, P. Reinhard, R.G. Wilks, F. Pianezzi, T. Kunze, D. Kreikemeyer-Lorenzo, L. Weinhardt, M. Blum, W. Yang, M. Gorgoi, E. Ikenaga, D. Gerlach, S. Ueda, Y. Yamashita, T. Chikyow, C. Heske, S. Buecheler, A.N. Tiwari, M. Bär, Formation of a K-In-Se surface species by NaF/KF postdeposition treatment of Cu(In, Ga)Se2 thin-film solar cell absorbers. ACS Appl. Mater. Interfaces. 9, 3581–3589 (2017)

    Google Scholar 

  95. E. Handick, P. Reinhard, J.-H. Alsmeier, L. Köhler, F. Pianezzi, S. Krause, M. Gorgoi, E. Ikenaga, N. Koch, R.G. Wilks, S. Buecheler, A.N. Tiwari, M. Bär, Potassium postdeposition treatment-induced band gap widening at Cu(In, Ga)Se2 surfaces—reason for performance leap? ACS Appl. Mater. Interfaces. 7, 27414–27420 (2015)

    Google Scholar 

  96. Z.Z. Kish, V.B. Lazarev, E.Y. Peresh, E.E. Semrad, Compounds in In2Se3-K2Se. Neorg. Mater. 24, 1602–1605 (1988)

    Google Scholar 

  97. F. Pianezzi, P. Reinhard, A. Chirilă, B. Bissig, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells. Phys. Chem. Chem. Phys. 16, 8843–8851 (2014)

    Google Scholar 

  98. H. Elanzeery, F. Babbe, M. Melchiorre, E. Robert, A. Zelenina, S. Siebentritt, Potassium fluoride ex-situ treatment on both Curich and Cu-poor CuInSe2 thin film solar cells. IEEE J. Photovolt. 7, 684–689 (2017)

    Google Scholar 

  99. I. Khatri, H. Fukai, H. Yamaguchi, M. Sugiyama, T. Nakada, Effect of potassium fluoride post-deposition treatment on Cu(In, Ga)Se2 thin films and solar cells fabricated onto sodalime glass substrates. Sol. Energy Mater. Sol. Cells 155, 280–287 (2016)

    Google Scholar 

  100. S.A. Jensen, S. Glynn, A. Kanevce, P. Dippo, J.V. Li, D.H. Levi, D. Kuciauskas, Beneficial effect of post-deposition treatment in high-efficiency Cu(In, Ga)Se2 solar cells through reduced potential fluctuations. J. Appl. Phys. 120, 063106 (2016)

    ADS  Google Scholar 

  101. A. Vilalta-Clemente, M. Raghuwanshi, S. Duguay, C. Castro, E. Cadel, P. Pareige, P. Jackson, R. Wuerz, D. Hariskos, W. Witte, Rubidium distribution at atomic scale in high efficient Cu(In, Ga)Se2 thin-film solar cells. Appl. Phys. Lett. 12, 103105 (2018)

    ADS  Google Scholar 

  102. P. Schöppe, S. Schönherr, R. Wuerz, W. Wisniewski, G. Martínez-Criado, M. Ritzer, K. Ritter, C. Ronning, C.S. Schnohr, Rubidium segregation at random grain boundaries in Cu(In, Ga)Se2 absorbers. Nano Energy 42, 307–313 (2017)

    Google Scholar 

  103. T. Unold, Talk at EMRS (2018)

    Google Scholar 

  104. S. Ishizuka, N. Taguchi, J. Nishinaga, Y. Kamikawa, S. Tanaka, H. Shibata, Group III elemental composition dependence of RbF post deposition treatment effects on Cu(In, Ga)Se2 thin films and solar cells. J. Phys. Chem. C 122, 3809–3817 (2018)

    Google Scholar 

  105. W.N. Shafarman, J.E. Phillips, Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells, in Conference Record of the 25th IEEE Photovoltaic Specialist Conference 1996 (Washington DC, USA, 1996), pp. 917–919

    Google Scholar 

  106. W. Paszkowicz, R. Minikayev, P. Piszora, D. Trots, M. Knapp, T. Wojciechowski, R. Bacewicz, Thermal expansion of CuInSe2 in the 11–1,073 K range: an X-ray diffraction study. Appl. Phys. A 116, 767–780 (2014). https://doi.org/10.1007/s00339-013-8146-9

    Article  ADS  Google Scholar 

  107. G. Gordillo, F. Mesa, C. Calderon, Electrical and morphological properties of low resistivity Mo thin films prepared by magnetron sputtering. Braz. J. Phys. 36(3B), 982–985 (2006)

    ADS  Google Scholar 

  108. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F.V. Kurdesau, A.N. Tiwari, M. Döbeli, Formation and characterisation of MoSe2 for Cu(In, Ga)Se2 based solar cells. Thin Solid Films 480–481, 433–438 (2005). https://doi.org/10.1016/j.tsf.2004.11.098

    Article  ADS  Google Scholar 

  109. T. Klinkert, B. Theys, G. Patriarche, M. Jubault, F. Donsanti, J.-F. Guillemoles, D. Lincot, New insights into the Mo/Cu(In, Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer. J. Chem. Phys. 145, 154702 (2016). https://doi.org/10.1063/1.4964677

    Article  ADS  Google Scholar 

  110. T. Wada, N. Kohara, S. Nishiwaki, T. Negami, Characterization of the Cu(In, Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films 387, 118–122 (2001)

    ADS  Google Scholar 

  111. J.A. Spies, R. Schafer, J.F. Wager, P. Hersh, H.A.S. Platt, D.A. Keszler, G. Schneider, R. Kykyneshi, J. Tate, X. Liu, A.D. Compaan, W.N. Shafarman, p in double-heterojunction thin-film solar cell p-layer assessment. Sol. Energy Mater. Sol. Cells 93, 1296–1308 (2009)

    Google Scholar 

  112. X. Zhang, M. Kobayashi, A. Yamada, Comparison of Ag(In, Ga)Se2/Mo and Cu(In, Ga)Se2/Mo interfaces in solar cells. ACS Appl. Mater. Interfaces. 9(19), 16215–16220 (2017). https://doi.org/10.1021/acsami.7b02548

    Article  Google Scholar 

  113. B.K. Choi, M. Kim, K.-H. Jung, J. Kim, K.-S. Yu, Y.J. Chang, Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy. Nanoscale Res. Lett. 12, 492 (2017). https://doi.org/10.1186/s11671-017-2266-7

    Article  ADS  Google Scholar 

  114. W. Kautek, H. Gerischer, H. Tributsch, The role of carrier diffusion and indirect optical transitions in the photoelectrochemical behavior of layer type d-band semiconductors. J. Electrochem. Soc. 127, 2471–2478 (1980)

    ADS  Google Scholar 

  115. S.M. Delphinec, M. Jayachandranb, C. Sanjeeviraja, Pulsed electrodeposition and characterization of molybdenum diselenide thin film. Mater. Res. Bull. 40, 135–147 (2005). https://doi.org/10.1016/j.materresbull.2004.09.008

    Article  Google Scholar 

  116. A.M. Vora, Effect of indium intercalation on various properties of MoSe2 single crystals. Cryst. Res. Technol. 42(3), 286–289 (2007). https://doi.org/10.1002/crat.200610814

    Article  Google Scholar 

  117. K.-J. Hsiao, J.-D. Liu, H.-H. Hsieh, T.-S. Jiang, Electrical impact of MoSe2 on CIGS thin-film solar cells. Phys. Chem. Chem. Phys. 15, 18174 (2013)

    Google Scholar 

  118. J.B. Pang, Y.A. Cai, Q. He, H. Wang, W.L. Jiang, J.J. He, T. Yu, W. Liu, Y. Zhang, Y. Sun, Preparation and characteristics of MoSe2 interlayer in bifacial Cu(In, Ga)Se2 solar cells. Phys. Procedia 32, 372–378 (2012)

    ADS  Google Scholar 

  119. K. Orgassa, H.W. Schock, J.H. Werner, Alternative back contact materials for thin film Cu(In, Ga)Se2 solar cells. Thin Solid Films 431–432, 387–391 (2003)

    Google Scholar 

  120. J. Malmström, S. Schleussner, L. Stolt, Enhanced back reflectance and quantum efficiency in thin film solar cells with a ZrN back reflector. Appl. Phys. Lett. 85, 2634 (2004). https://doi.org/10.1063/1.1794860

    Article  ADS  Google Scholar 

  121. S. Schleussner, T. Kubart, T. Törndahl, M. Edoff, Reactively sputtered ZrN for application as reflecting back contact in Cu(In, Ga)Se2 solar cells. Thin Solid Films 517, 5548–5552 (2009)

    ADS  Google Scholar 

  122. B. Bissig, R. Carron, L. Greuter, S. Nishiwaki, E. Avancini, C. Andres, T. Feurer, S. Buecheler, A.N. Tiwari, Novel back contact reflector for high efficiency and double-graded Cu(In,Ga)Se2 thin-film solar cells. Prog. Photovolt. Res. Appl. 1–7 (2018). https://doi.org/10.1002/pip.3029

  123. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    ADS  Google Scholar 

  124. C.P. Thompson, S. Hegedus, P. Carcia, R.S. McLean, The effects of device geometry and TCO/Buffer layers on damp heat accelerated lifetime testing of Cu(In, Ga)Se2 solar cells. IEEE J. Photovolt. 3, 494 (2013)

    Google Scholar 

  125. T. Jäger, Y.E. Romanyuk, S. Nishiwaki, B. Bissig, F. Pianezzi, P. Fuchs, C. Gretener, M. Döbeli, A.N. Tiwari, Hydrogenated indium oxide window layers for high-efficiency Cu(In, Ga)Se2 solar cells. J. Appl. Phys. 117, 205301 (2015)

    ADS  Google Scholar 

  126. Y. Kuwahata, T. Minemoto, Impact of Zn1-xMgxO: Al transparent electrode for buffer-less Cu(In, Ga)Se2 solar cells. Renew. Energy 65, 113–116 (2014)

    Google Scholar 

  127. F.J. Pern, R. Noufi, X. Li, C. DeHart, B. To, Damp-heat induced degradation of transparent conducting oxides for thin-film solar cells, in Conference Record of the IEEE PVSC (2008), pp. 43–48

    Google Scholar 

  128. R. Menner, S. Paetel, W. Wischmann, M. Powalla, Indium zinc oxide window layer for high-efficiency Cu(In, Ga)Se2 solar cells. Thin Solid Films 634, 160–164 (2017)

    ADS  Google Scholar 

  129. T. Shitaya, H. Sato, Single crystal CdS solar cells. J. Appl. Phys. 7, 1348–1353 (1968)

    Google Scholar 

  130. R.A. Mickelsen, W. Chen, Polycrystalline thin-film CuInSe2 solar cells, in Records of IEEE PVSC (1982), pp. 781–785

    Google Scholar 

  131. R.R. Potter, C. Eberspacber, L.B. Fabick, Device analysis of CuInSe2/CdZnS/ZnO Solar cells, in Records of IEEE PVSC (1985), pp. 1659–1664

    Google Scholar 

  132. K. Mitchell, C. Eberspacher, J. Ermer, D. Pier, Single and tandem junction CuInSe2 cell and module technology, in Records IEEE PVSC (1988), pp. 1384–1389

    Google Scholar 

  133. J. Kessler, K.O. Velthaus, M. Ruckh, R. Laichinger, H.-W.. Schock, D. Lincot, R. Ortega, J. Vedel, Chemical bath deposition of CdS on CuInSe2, etching effects and growth kinetics, in 6th International Photovoltaic Science and Engineering Conference (PVSEC-6) (1992), pp. 1005–1010

    Google Scholar 

  134. M.A. Contreras, M.J. Romer, B. To, F. Hasoon, R. Noufi, S. Ward, K. Ramanathan, Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells. Thin Solid Films 403–404, 204–211 (2002)

    Google Scholar 

  135. A. Kylner, The chemical bath deposited CdS/Cu(In, Ga)Se2 interface as revealed by X-ray photoelectron spectroscopy. J. Electrochem. Soc. 146(5), 1816–1823 (1999)

    Google Scholar 

  136. C. Heske, D. Eich, R. Fink, E. Umbach, T. van Buuren, C. Bostedt, L.J. Terminello, S. Kakar, M.M. Grush, T.A. Callcott, F.J. Himpsel, D.L. Ederer, R.C.C. Perera, W. Riedl, F. Karg, Observation of intermixing at the buried CdS/Cu(In, Ga)Se2 thin film solar cell heterojunction. Appl. Phys. Lett. 74, 1451–1453 (1999)

    ADS  Google Scholar 

  137. D. Abou-Ras, S. Wagner, B.J. Stanbery, H.-W. Schock, R. Scheer, L. Stolt, S. Siebentritt, D. Lincot, C. Eberspacher, K. Kushiya, A.N. Tiwari, Innovation highway: breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint. Thin Solid Films 633, 2–12 (2017)

    ADS  Google Scholar 

  138. S. Kurtz, I. Repins, W.K. Metzger, P.J. Verlinden, S. Huang, S. Bowden, I. Tappan, K. Emery, L.L. Kazmerski, D. Levi, Historical analysis of champion photovoltaic module efficiencies. IEEE J. Photovolt. 8, 363 (2018)

    Google Scholar 

  139. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10, 583–586 (2016)

    Google Scholar 

  140. J. Löckinger, S. Nishiwaki, T.P. Weiss, B. Bissig, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, TiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 174, 397–404 (2018)

    Google Scholar 

  141. W. Witte, D. Abou-Ras, D. Hariskos, Chemical bath deposition of Zn(O, S) and CdS buffers: influence of Cu(In, Ga)Se2 grain orientation. Appl. Phys. Lett. 102, 051607 (2013)

    ADS  Google Scholar 

  142. T.M. Friedlmeier, P. Jackson, D. Kreikemeyer-Lorenzo, D. Hauschild, O. Kiowski, D. Hariskos, L. Weinhardt, C. Heske, M. Powalla, A closer look at Initial CdS growth on high-efficiency Cu(In,Ga)Se2 absorbers using surface-sensitive methods, in Proceedings IEEE PVSC (2016), pp. 457–461

    Google Scholar 

  143. W. Witte, D. Abou-Ras, D. Hariskos, Improved growth of solution-deposited thin films on polycrystalline Cu(In, Ga)Se2. Phys. Status Solidi RRL 10, 300–304 (2016)

    Google Scholar 

  144. D. Hariskos, R. Menner, P. Jackson, S. Paetel, W. Witte, W. Wischmann, M. Powalla, L. Bürkert, T. Kolb, M. Oertel, B. Dimmler, B. Fuchs, New reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2-based solar cells. Prog. Photovolt: Res. Appl. 20, 534–542 (2012)

    Google Scholar 

  145. T.M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski, R. Wuerz, M. Powalla, Improved photocurrent in Cu(In,Ga)Se2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer, and 21.0% Cd-free. IEEE J. Photovolt. 5, 1487–1491 (2015)

    Google Scholar 

  146. N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, C.-H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Björkman, S. Spiering, A.N. Tiwari, T. Törndahl, Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovoltaics Res. Appl. 18, 411–433 (2010)

    Google Scholar 

  147. J. Palm, T. Dalibor, R. Lechner, S. Pohlner, R. Verma, R. Dietmüller, A. Heiß, H. Vogt, F. Karg, Cd-free CIS thin film solar modules at 17% efficiency, in Proceedings of the 29th European Photovoltaic Solar Energy Conference (2014), pp. 1433–1438

    Google Scholar 

  148. K. Ramanathan, J. Mann, S. Glynn, S. Christensen, J. Pankow, J. Li, J. Scharf, L. Mansfield, M. Contreras, R. Noufi, A comparative study of Zn(O,S) buffer layers and CIGS solar cells fabricated by CBD, ALD, and sputtering, in Proceedings 38th IEEE Photovoltaic Specialists Conference (2012), pp. 1677–1680

    Google Scholar 

  149. W. Witte, D. Hariskos, A. Eicke, R. Menner, O. Kiowski, M. Powalla, Impact of annealing on Cu(In, Ga)Se2 solar cells with Zn(O, S)/(Zn, Mg)O buffers. Thin Solid Films 535, 180–183 (2013)

    ADS  Google Scholar 

  150. A. Wachau, J. Schulte, P. Agoston, F. Hübler, A. Steigert, R. Klenk, F. Hergert, H. Eschrich, V. Probst, Sputtered Zn(O, S) buffer layers for CIGS solar modules—from lab to pilot production. Prog. Photovoltaics Res. Appl. 25, 696–705 (2017)

    Google Scholar 

  151. M.A. Mughal, R. Engelken, R. Sharma, Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells. Solar Energy 120, 131–146 (2015)

    ADS  Google Scholar 

  152. W. Witte, D. Hariskos, M. Powalla, Comparison of charge distributions in CIGS thin-film solar cells with ZnS/(Zn, Mg)O and CdS/i-ZnO buffers. Thin Solid Films 519, 7549–7552 (2011)

    ADS  Google Scholar 

  153. D. Hariskos, P. Jackson, W. Hempel, S. Paetel, S. Spiering, R. Menner, W. Wischmann, M. Powalla, Method for a high-rate solution deposition of Zn(O, S) buffer layer for high-efficiency Cu(In, Ga)Se2-based solar cells. IEEE J. Photovolt. 6, 1321–1326 (2016)

    Google Scholar 

  154. T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J.-L. Wu, K.F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, H. Sugimoto, Enhanced efficiency of Cd-Free Cu(In, Ga)(Se, S)2 minimodule via (Zn, Mg)O second buffer layer and alkali metal post-treatment. IEEE J. Photovolt. 7, 1773–1780 (2017)

    Google Scholar 

  155. Module with record efficiency from AVANCIS: Fraunhofer ISE certifies CIGS solar module with an efficiency of 17.9% (2016). http://www.avancis.de/en/press/news/article/avancis-erzielt-erneuten-wirkungsgradrekord-fraunhofer-ise-zertifiziert-cigs‐solarmodul-mit-wirkung/

  156. N. Barreau, Indium sulfide and relatives in the world of photovoltaics. Sol. Energy 83, 363–371 (2009)

    ADS  Google Scholar 

  157. D. Hauschild, F. Meyer, A. Benkert, D. Kreikemeyer-Lorenzo, T. Dalibor, J. Palm, M. Blum, W. Yang, R.G. Wilks, M. Bär, F. Reinert, C. Heske, L. Weinhardt, Improving performance by Na doping of a buffer layer—chemical and electronic structure of the InxSy:Na/CuIn(S, Se)2 thin-film solar cell interface. Prog. Photovolt. Res. Appl. 26, 359–366 (2018)

    Google Scholar 

  158. E. Wallin, U. Malm, T. Jamar, O. Lundberg, M. Edoff, L. Stolt, World-record Cu(In,Ga)Se2-based thin-film sub-module with 17.4.% efficiency. Prog. Photovolt. 20, 851–854 (2012)

    Google Scholar 

  159. K. Ellmer, A. Klein, B. Rech (eds.), Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, Chapter 9 (Springer, Berlin/Heidelberg, 2008), pp. 418–419

    Google Scholar 

  160. J.V. Li, X. Li, Y. Yan, C.-S. Jiang, W.K. Metzger, I.L. Repins, M.A. Contreras, D.H. Levi, Influence of sputtering a ZnMgO window layer on the interface and bulk properties of Cu(In, Ga)Se2 solar cells. J. Vac. Sci. Technol. 27, 2384–2389 (2009)

    Google Scholar 

  161. D. Hariskos, B. Fuchs, R. Menner, N. Naghavi, C. Hubert, D. Lincot, M. Powalla, The Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 17, 479–488 (2009)

    Google Scholar 

  162. F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules. Sol. Energy 77, 685–695 (2004). https://doi.org/10.1016/j.solener.2004.04.010

    Article  ADS  Google Scholar 

  163. K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla, Diffusion barriers for CIGS solar cells on metallic substrates. Thin Solid Films 43–432, 392–397 (2003)

    Google Scholar 

  164. R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, O. Yazdani-Assl, CIGS thin-film solar cells on steel substrates. Thin Solid Films 517, 2415–2418 (2009)

    ADS  Google Scholar 

  165. K.-B. Kim, Effect of metal barrier layer for flexible solar cell devices on stainless steel substrates. Appl. Sci. Converg. Technol. 26(1), 16–19 (2016). https://doi.org/10.5757/ASCT.2017.26.1.16

    Article  Google Scholar 

  166. P. Reinhard, A. Chirilă, P. Blasch, F. Pianezzi, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE J. Photovolt. 3(1), 572–580 (2013). https://doi.org/10.1109/JPHOTOV.2012.2226869

    Article  Google Scholar 

  167. R. Zhang, D.R. Hollars, J. Kanicki, High efficiency Cu(In, Ga)Se2 flexible solar cells fabricated by roll-to-roll metallic precursor co-sputtering method. Jpn. J. Appl. Phys. 52, 092302 (2013). https://doi.org/10.7567/JJAP.52.092302

    Article  ADS  Google Scholar 

  168. R. Birkmire, E. Eser, S. Fields, W. Shafarman, Cu(InGa)Se2 solar cells on a flexible polymer web. Prog. Photovolt: Res. Appl. 13, 141–148 (2005). https://doi.org/10.1002/pip.605

    Article  Google Scholar 

  169. S. Nakano, T. Matsuoka, S. Kiyama, H. Kawata, N. Nakamura, Y. Nakashima, S. Tsuda, H. Nishiwaki, M. Ohnishi, I. Nagaoka, Y. Kuwano, Laser patterning method for integrated type a-Si solar cell submodules. Jpn. J. Appl. Phys. 25, 1936 (1986)

    ADS  Google Scholar 

  170. G. Heise, A. Börner, M. Dickmann, M. Englmaier, A. Heiss, M. Kemnitzer, J. Konrad, R. Moser, J. Palm, H. Vogt, H.P. Huber, Demonstration of the monolithic interconnection on CIS solar cells by picosecond laser structuring on 30 by 30 cm2 modules. Prog. Photovolt: Res. Appl. (2014). https://doi.org/10.1002/pip.2552

  171. P.-O. Westin, U. Zimmermann, M. Edoff, Laser patterning of P2 interconnect via in thin-film CIGS PV modules. Sol. Energy Mater. Sol. Cells 09, 1230 (2008). https://doi.org/10.1016/j.solmat.2008.04.015

    Article  Google Scholar 

  172. G. Heise, A. Heiss, H. Vogt, H.P. Huber, Ultrafast lasers improve the efficiency of CIS thin film solar cells. Phys. Procedia 39, 702–708 (2012)

    ADS  Google Scholar 

  173. S. Nishiwaki, A. Burn, S. Buecheler, M. Muralt, S. Pilz, V. Romano, R. Witte, L. Krainer, G.J. Spühler, A.N. Tiwari, A monolithically integrated high-efficiency Cu(In, Ga)Se2 mini-module structured solely by laser. Prog. Photovolt Res. Appl. 23, 1908–1915 (2015). https://doi.org/10.1002/pip.2583

    Article  Google Scholar 

  174. O. Tober, J. Wienke, M. Winkler, J. Penndorf, J. Griesche, Mater. Res. Soc. Symp. Proc. 763, 371 (2003)

    Google Scholar 

  175. F. Kessler, D. Hermann, M. Powalla, Approaches to flexible CIGS thin-film solar cells. Thin Solid Films 480–481, 491 (2005)

    ADS  Google Scholar 

  176. H. Vogt, A. Heiss, J. Palm, F. Karg, H. P. Huber, G. Heise, All laser patterning serial interconnection for highly efficient CIGSSe modules, in Proceedings of 26th EUPVSEC (Hamburg, 3DV.2.9, 2011)

    Google Scholar 

  177. G. Heise, M. Domke, J. Konrad, F. Pavic, M. Schmidt, H. Vogt, A. Heiss, J. Palm, H.P. Huber, Monolithical serial interconnects of large CIS solar cells with picosecond laser pulses. Phys. Procedia 12, 149–155 (2011)

    ADS  Google Scholar 

  178. G. Heise, A. Heiss, C. Hellwig, T. Kuznicki, H. Vogt, J. Palm, H.P. Huber, Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells. Prog. Photovolt: Res. Appl. 21, 681–692 (2013). https://doi.org/10.1002/pip.1261

    Article  Google Scholar 

  179. S. Zoppel, H. Huber, G.A. Reider, Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl. Phys. A 89, 161–163 (2007)

    ADS  Google Scholar 

  180. M.M. Kirillova, L.V. Nomerovannaya, M.M. Noskov, Optical properties of molybdenum single crystals. Sov. Phys. JETP 33, 1210–1214 (1971)

    ADS  Google Scholar 

  181. M. Domke, L. Nobile, S. Rapp, S. Eiselen, J. Sotrop, H.P. Huber, M. Schmidt, Understanding thin film laser ablation: the role of the effective penetration depth and the film thickness. Phys. Proc. 56, 1007–1014 (2014)

    ADS  Google Scholar 

  182. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, H. Huber, Laser ablation of thin molybdenum films on transparent substrates at low fluencies. Appl. Phys. A 102, 173–178 (2011)

    ADS  Google Scholar 

  183. J. Bovatsek, A. Tamhankar, R.S. Patel, N.M. Bulgakova, J. Bonse, Thin film removal mechanisms in ns-laser processing of photovoltaic materials. Thin Solid Films 518, 2897 (2010)

    ADS  Google Scholar 

  184. L. Zhigilei, Z. Lin, D. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892 (2009)

    Google Scholar 

  185. M. Domke, S. Rapp, M. Schmidt, H. Huber, Ultrafast movies of thin film laser ablation. Appl. Phys. A 109, 409–420 (2012)

    ADS  Google Scholar 

  186. J. Sotrop, A. Kersch, M. Domke, G. Heise, H.P. Huber, Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses. Appl. Phys. A 113, 397 (2013)

    ADS  Google Scholar 

  187. A. Burn, V. Romano, M. Muralt, R. Witte, B. Frei, S. Buecheler, S. Nishiwaki, Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses, in Proceedings of SPIE 8243, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII (2012), p. 824318. https://doi.org/10.1117/12.906919

  188. J. Bonse, S. Hoehm, S. Kirner, A. Rosenfeld, J. Krueger, Laser-induced periodic surface structures a scientific evergreen. IEEE J. Sel. Top. Quant. Electron. 23(3) (2017)

    Google Scholar 

  189. E. Lotter, B. Freilinger, R. Wächter, M. Powalla, Laser patterning of the semiconductor layer of CIGS modules under industrial conditions, in Proceedings of the 16th European Photovoltaic Solar Energy Conference (Glasgow, UK, 1–5 May 2000), pp. 779–782

    Google Scholar 

  190. P.-O. Westin, U. Zimmermann, M. Ruth, M. Edoff, Next generation interconnective laser patterning of CIGS thin film modules. Sol. Energy Mater. Sol. Cells 95, 1062–1068 (2011)

    Google Scholar 

  191. P. Gecys, E. Markauskas, A. Zemaitis, G. Raciukaitis, Variation of P2 series interconnects electrical conductivity in the CIGS solar cells by picosecond laser-induced modification. Sol. Energy 132, 493–502 (2016)

    ADS  Google Scholar 

  192. R. Moser, M. Domke, G. Heise, G. Marowsky, H.P. Huber, Nanosecond laser lift-off of a copper-Indium-diselenide thin film at a wavelength of 1342 nm. Phys. Procedia 41, 739–744 (2013)

    ADS  Google Scholar 

  193. S. Rapp, M. Schmidt, H.P. Huber, Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms. Appl. Phys. A 122 (2016)

    Google Scholar 

  194. G. Heise, M. Dickmann, M. Domke, A. Heiss, T. Kuznicki, J. Palm, I. Richter, H. Vogt, H. Huber, Investigation of the ablation of zinc oxide thin films on copper–indium-selenide layers by ps laser pulses. Appl. Phys. A 104, 387–393 (2011)

    ADS  Google Scholar 

  195. P. Gečys, E. Markauskas, S. Nishiwaki, S. Buecheler, R. De Loor, A. Burn, V. Romano, G. Račiukaitis, CIGS thin-film solar module processing: case of high-speed laser scribing. Sci. Rep. 7, 40502 (2017). https://doi.org/10.1038/srep40502

  196. A. Burn, M. Muralt, S. Pilz, V. Romano, R. Witte, B. Frei, S. Buecheler, S. Nishiwaki, L. Krainer, All fiber laser scribing of Cu(In, Ga)Se2 thin-film solar modules. Phys. Procedia 41, 713–722 (2013)

    ADS  Google Scholar 

  197. D.J. Hwang, S. Kuk, Z. Wang, S. Fu, T. Zhang, G. Kim, W.M. Kim, J. Jeong, Laser scribing of CIGS thin-film solar cell on flexible substrate. Appl. Phys. A 123, 55 (2017)

    ADS  Google Scholar 

  198. V. Probst, A. Jasenek, C. Sandfort, A. Letsch, I. Koetschau, T. Hahn, J. Feichtinger, H. Eschrich, Innovative front end processing for next generation CIS module production. Jpn. J. Appl. Phys. 54, 08KC12 (2015). http://dx.doi.org/10.7567/JJAP.54.08KC12

  199. M.L. Crozier, A. Brunton, S.J. Henley, J.D. Shephard, A. Abbas, J.W. Bowers, P.M. Kaminski, J.M. Walls, Inkjet and laser hybrid processing for series interconnection of thin film photovoltaics. Mater. Res. Innovations 18(7), 509–514 (2014). https://doi.org/10.1179/1433075X14Y.0000000260

    Article  Google Scholar 

  200. J. Britt, S. Wiedeman, S. Albright, Process development for CIGS-based thin-film photovoltaic modules. Phase II technical report. NREL/SR-520–29227 (2000)

    Google Scholar 

  201. E. Niemi, J. Sterner, P. Carlsson, J. Oliv, E. Jaremalm, S. Lindström, All-sputtered flexible CIGS cells at high speed, in Proceedings of 31st EU PVSEC 2015 (Hamburg, 2015), pp. 1010–1013

    Google Scholar 

  202. H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S.K. Karuturi, X. Fu, K. Weber, X. Xiao, T.P. White, K. Catchpole, Energy Environ. Sci. 11, 394 (2018). https://doi.org/10.1039/c7ee02627g

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessler, F., Hariskos, D., Spiering, S., Lotter, E., Huber, H.P., Wuerz, R. (2020). CIGS Thin Film Photovoltaic—Approaches and Challenges. In: Petrova-Koch, V., Hezel, R., Goetzberger, A. (eds) High-Efficient Low-Cost Photovoltaics. Springer Series in Optical Sciences, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-22864-4_9

Download citation

Publish with us

Policies and ethics