Skip to main content

Solving Sorting of Rolling Stock Problems Utilizing Pseudochain Structures in Graphs

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 838))

  • 376 Accesses

Abstract

Rearranging cars of an incoming train in a hump yard is a widely discussed topic. Sorting of Rolling Stock Problems can be described in several scenarios and with several constrains. We focus on the train marshalling problem where the incoming cars of a train are distributed to a certain number of sorting tracks. When pulled out again to build the outgoing train, cars sharing the same destination should appear consecutively. The goal is to minimize the number of sorting tracks. We suggest a graph-theoretic approach for this \(\mathcal {NP}\)-complete problem. The idea is to partition an associated directed graph into what we call pseudochains of minimum length. We describe a greedy-type heuristic to solve the partitioning problem which, on random instances, performs better than the known heuristics for the train marshalling problem. In addition we discuss the TMP with b-bounded sorting tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beygang, K., Dahms, F., Krumke, S.O.: Train Marshalling Problem—Algorithms and Bounds. Technical Report, vol. 132. University of Kaiserslautern (2010)

    Google Scholar 

  2. Hiller, W.: Rangierbahnhöfe. VEB Verlag für Verkehrswesen, Berlin (1983)

    Google Scholar 

  3. Giger, M.: Rangierbahnhof limmattal. In: Swiss Engineering STZ Automate Now!. vol. 1–2, pp. 93–94 (2010)

    Google Scholar 

  4. Hansmann, R.S.: Optimal Sorting of Rolling Stock. Cuvillier, Göttingen (2011)

    Google Scholar 

  5. Zhu, Y., Zhu, R.: Sequence reconstruction under some order-type constraints. Sci. Sin. (A) 26(7), 702–713 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Dahlhaus, E., Horak, P., Miller, M., Ryan, J.: The train marshalling problem. Discret. Appl. Math. 103(1–3), 41–54. https://doi.org/10.1016/s0166-218x(99)00219-x (2000)

    Article  MathSciNet  Google Scholar 

  7. Brueggeman, L., Fellows, M., Fleischer, R., Lackner, M., Komusiewicz, C., Koutis, Y., Pfandler, A., Rosamond, F.: Train marshalling is fixed parameter tractable. In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) Fun with Algorithms, pp. 51–56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30347-0_8 (2012)

    Google Scholar 

  8. Dahlhaus, E., Manne, F., Miller, M., Ryan, J.: Algorithms for combinatorial problems related to train marshalling. In: Proceedings of AWOCA 2000, pp. 7–16, Hunter Valley (2000)

    Google Scholar 

  9. Beygang, K.: On the Solution of Some Railway Freight Car optimization Problems. Dr. Hut, München (2011)

    Google Scholar 

  10. Rinaldi, F., Rizzi, R.: Solving the train marshalling problem by inclusion—exclusion. Discret. Appl. Math. 217)(Part 3), 685–690 (2017)

    Article  MathSciNet  Google Scholar 

  11. Haahr, J.T., Lusby, R.M.: A matheuristic approach to integrate humping and pullout sequencing operations at railroad hump yards. Networks 67(2), 126–138 (2016)

    Article  MathSciNet  Google Scholar 

  12. Dörpinghaus, J., Schrader, R.: A graph-theoretic approach to the train marshalling problem. In: Ganzha, M., Maciaszek, L., Paprzycki, M.(eds.) Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, series Annals of Computer Science and Information Systems, vol. 15, pp. 227–231. IEEE. https://doi.org/10.15439/2018F26 (2018)

  13. Dörpinghaus, J.: Pseudostabile Mengen in Graphen. Fraunhofer Verlag. https://kups.ub.uni-koeln.de/8066/ (2018)

  14. Bohlin, M., Hansmann, R., Zimmermann, U.T.: Optimization of railway freight shunting. In: Handbook of Optimization in the Railway Industry, pp. 181–212. Springer (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Dörpinghaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dörpinghaus, J., Schrader, R. (2020). Solving Sorting of Rolling Stock Problems Utilizing Pseudochain Structures in Graphs. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 838. Springer, Cham. https://doi.org/10.1007/978-3-030-22723-4_4

Download citation

Publish with us

Policies and ethics