Skip to main content

Epilogue: So, What Is Math Cognition?

  • Chapter
  • First Online:
Interdisciplinary Perspectives on Math Cognition

Part of the book series: Mathematics in Mind ((MATHMIN))

  • 923 Accesses

Abstract

A key 2005 collection of papers (Royer 2008) showed how complex the study of mathematical cognition (MC) had become already in the early 2000s, incorporating a broad range of scientific, educational, and humanistic perspectives into its modus operandi. Studies published in the journal Mathematical Cognition have also revealed how truly expansive the field is, bringing together researchers and scholars from diverse disciplines, from neuroscience to semiotics. This volume has aimed to provide a contemporary snapshot of how the study of MC is developing. In this final chapter, the objective is to provide a selective overview of different approaches from the past as a concluding historical assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, J. (2012). On the cognitive and semiotic structure of mathematics. In: M. Bockarova, M. Danesi, and R. Núñez (eds.), Semiotic and cognitive science essays on the nature of mathematics, pp. 1–34. Munich: Lincom Europa.

    Google Scholar 

  • Allwein, G. and Barwise, J. (eds.) (1996). Logical reasoning with diagrams. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Ambrose, C. (2002). Are we overemphasizing manipulatives in the primary grades to the detriment of girls? Teaching Children Mathematics 9: 16–21.

    Google Scholar 

  • Ardila A. and Rosselli M. (2002). Acalculia and dyscalculia. Neuropsychology Review 12: 179–231.

    Article  Google Scholar 

  • Barker-Plummer, D. and Bailin, S. C. (1997). The role of diagrams in mathematical proofs. Machine Graphics and Vision 8: 25–58.

    Google Scholar 

  • Barker-Plummer, D. and Bailin, S. C. (2001). On the practical semantics of mathematical diagrams. In: M. Anderson (ed.), Reasoning with diagrammatic representations. New York: Springer.

    Google Scholar 

  • Barwise, J. and Etchemendy, J. (1994). Hyperproof. Stanford: CSLI Publications.

    MATH  Google Scholar 

  • Black, M. (1962). Models and metaphors. Ithaca: Cornell University Press.

    Google Scholar 

  • Bockarova, M., Danesi, M., and Núñez, R. (eds.) (2012). Semiotic and cognitive science essays on the nature of mathematics. Munich: Lincom Europa.

    MATH  Google Scholar 

  • Butterworth B., Varma S., Laurillard D. (2011). Dyscalculia: From brain to education. Science 332: 1049–1053

    Article  MathSciNet  Google Scholar 

  • Butterworth, B. (1999). What counts: How every brain is hardwired for math. Michigan: Free Press.

    MATH  Google Scholar 

  • Cartmill, M., Pilbeam, D., and Isaac, G. (1986). One hundred years of paleoanthropology. American Scientist 74: 410–420.

    Google Scholar 

  • Cassirer, E. (1944). An essay on man. New Haven: Yale University Press.

    Google Scholar 

  • Chandrasekaran, B., Glasgow, J., and Narayanan, N. H. (eds.) (1995). Diagrammatic reasoning: Cognitive and computational perspectives. Cambridge: MIT Press.

    Google Scholar 

  • Cummins, R. (1996). Representations, targets, and attitudes. Cambridge: MIT Press.

    Google Scholar 

  • Danesi, M. (2013). Discovery in mathematics: An interdisciplinary perspective. Munich: Lincom Europa.

    MATH  Google Scholar 

  • Danesi, M. (2016). Language and mathematics: an interdisciplinary guide. Berlin: Mouton de Gruyter.

    Book  Google Scholar 

  • Danesi, M. and Bockarova, M. (2013). Mathematics as a modeling system. Tartu: University of Tartu Press.

    Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Dehaene, S. (2004). Arithmetic and the brain. Current Opinion in Neurobiology 14: 218–224.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., and Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology 20: 487–506

    Article  Google Scholar 

  • Devlin, K. J. (2000). The math gene: How mathematical thinking evolved and why numbers are like gossip. New York: Basic.

    MATH  Google Scholar 

  • Devlin, K. J. (2005). The math instinct: Why you’re a mathematical genius (along with lobsters, birds, cats and dogs). New York: Thunder’s Mouth Press.

    Google Scholar 

  • Fauconnier, G. and Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New York: Basic.

    Google Scholar 

  • Gödel, K. (1931). Ãœber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Teil I. Monatshefte für Mathematik und Physik 38: 173–189.

    Article  MathSciNet  Google Scholar 

  • Godino, J. D., Font, V., Wilhelmi, R. and Lurduy, O. (2011). Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics 77: 247–265.

    Article  Google Scholar 

  • Hammer, E. (1995). Reasoning with sentences and diagrams. Notre Dame Journal of Formal Logic 35: 73–87.

    Article  MathSciNet  Google Scholar 

  • Hammer, E. and Shin, S. (1996). Euler and the role of visualization in logic. In: J. Seligman and D. WesterstÃ¥hl, (eds.), Logic, language and computation, Volume 1. Stanford: CSLI Publications.

    Google Scholar 

  • Hammer, E., and Shin, S. (1998). Euler’s visual logic. History and Philosophy of Logic 19: 1–29.

    Article  MathSciNet  Google Scholar 

  • Harris, Z. (1968). Mathematical structures of language. New York: John Wiley.

    MATH  Google Scholar 

  • Hockett, C. F. (1967). Language, mathematics and linguistics. The Hague: Mouton.

    Book  Google Scholar 

  • Isaacs E. B, Edmonds C. J., Lucas A. and Gadian D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain 124: 1701–1707.

    Article  Google Scholar 

  • Izard, V. Pica, P., Pelke, E. S., and Dehaene, S. (2011). Flexible intuitions of Euclidean geometry in an Amazonian indigene group. PNAS 108: 9782–9787.

    Article  Google Scholar 

  • Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination and reason. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Kant, I. (1790. Critique of pure reason, trans. J. M. D. Meiklejohn. CreateSpace Platform.

    Google Scholar 

  • Kauffman, L. K. (2001). The mathematics of Charles Sanders Peirce. Cybernetics & Human Knowing 8: 79–110.

    Google Scholar 

  • Kiryushchenko, V. (2012). The visual and the virtual in theory, life and scientific practice: The case of Peirce’s quincuncial map projection. In: M. Bockarova, M. Danesi, and R. Núñez (eds.), Semiotic and cognitive science essays on the nature of mathematics. Munich: Lincom Europa.

    Google Scholar 

  • Kulpa, Z. (2004). On diagrammatic representation of mathematical knowledge. In: A. Sperti, G. Bancerek, and A. Trybulec (eds.), Mathematical knowledge management. New York: Springer.

    MATH  Google Scholar 

  • Lakoff, G. (1987). Women, fire and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Lakoff, G. and Johnson, M. (1980). Metaphors we live by. Chicago: Chicago University Press.

    Google Scholar 

  • Lakoff, G. and Johnson, M. (1999). Philosophy in flesh: The embodied mind and its challenge to western thought. New York: Basic.

    Google Scholar 

  • Lakoff, G. and Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    MATH  Google Scholar 

  • Langer, S. K. (1948). Philosophy in a new key. New York: Mentor Books.

    Google Scholar 

  • Lesh, R. and Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning 5: 157.

    Article  Google Scholar 

  • Marcus, S. (2012). Mathematics between semiosis and cognition. In: M. Bockarova, M. Danesi, and R. Núñez (eds.), Semiotic and cognitive science essays on the nature of mathematics, pp. 98–182. Munich: Lincom Europa.

    Google Scholar 

  • McComb, K., Packer, C., and Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behavior 47: 379–387.

    Article  Google Scholar 

  • Musser, G. L., Burger, W. F., and Peterson, B. E. (2006). Mathematics for elementary teachers: A contemporary approach. Hoboken: John Wiley.

    Google Scholar 

  • Núñez, R., Edwards, L. D., and Matos, F. J. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics 39: 45–65.

    Article  Google Scholar 

  • Peirce, C. S. (1931–1958). Collected papers of Charles Sanders Peirce, ed. by C. Hartshorne, P. Weiss and A.W. Burks, vols. 1–8. Cambridge: Harvard University Press.

    Google Scholar 

  • Piaget, J. (1952). The child’s conception of number. London: Routledge and Kegan Paul.

    Google Scholar 

  • Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education 12: 1–19.

    Article  Google Scholar 

  • Roberts, D. D. (2009). The existential graphs of Charles S. Peirce. The Hague: Mouton.

    Book  Google Scholar 

  • Royer, J. (ed.) (2008). Mathematical cognition. Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Shin, S. (1994). The logical status of diagrams. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Skemp, R. R. (1971). The psychology of learning mathematics. Harmondsworth: Penguin.

    Google Scholar 

  • Stjernfelt, F. (2007). Diagrammatology: An investigation on the borderlines of phenomenology, ontology, and semiotics. New York: Springer.

    Book  Google Scholar 

  • Taylor, R. and Wiles, A. (1995). Ring-theoretic properties of certain Hecke algebras. Annals of Mathematics 141: 553–572.

    Article  MathSciNet  Google Scholar 

  • Thom, R. (1975). Structural stability and morphogenesis: An outline of a general theory of models. Reading: John Benjamins.

    MATH  Google Scholar 

  • Thom, R. (2010). Mathematics. In: T. A. Sebeok and M. Danesi (eds.), Encyclopedic dictionary of semiotics, 3rd edition. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Venn, J. (1880). On the employment of geometrical diagrams for the sensible representation of logical propositions. Proceedings of the Cambridge Philosophical Society 4: 47–59.

    MATH  Google Scholar 

  • Venn, J. (1881). Symbolic logic. London: Macmillan.

    Book  Google Scholar 

  • Yancey, A., Thompson, C., and Yancey, J. (1989). Children must learn to draw diagrams. Arithmetic Teacher 36: 15–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Danesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danesi, M. (2019). Epilogue: So, What Is Math Cognition?. In: Danesi, M. (eds) Interdisciplinary Perspectives on Math Cognition. Mathematics in Mind. Springer, Cham. https://doi.org/10.1007/978-3-030-22537-7_20

Download citation

Publish with us

Policies and ethics