Skip to main content

Genomics of Aging and Longevity

  • Reference work entry
  • First Online:
Encyclopedia of Gerontology and Population Aging

Synonyms

Genetics and epigenetics of aging and longevity; Genomics of centenarians; Genomics of healthy aging; Genomics of healthy lifespan

Definition

Genomics of aging and longevity encompasses the fields of genomics and epigenomics implemented towards the understanding of a healthy aging phenotype. Exceptionally long-lived individuals (centenarians) are used as a model for longevity alongside animal and cell models that are used for mechanism and pathway illustration and elucidation.

Overview

Aging can be defined as a progressive decline in organ function and is considered the main risk factor for chronic disease, weakened health, and increased risk of morality (Macedo et al. 2017). Aging research has progressed in recent years, especially since it has been found to be mediated, at least to some extent, by genetic pathways and biochemical processes (López-Otín et al. 2013). Further, longevity is one of the most complex phenotypes (Brooks-Wilson 2013) with studies centering on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aquino EM, Benton MC, Haupt LM, Sutherland HG, Griffiths LR, Lea RA (2018) Current understanding of DNA methylation and age-related disease. OBM Genet 2:1–1

    Google Scholar 

  • Armstrong NJ, Mather KA, Thalamuthu A et al (2017) Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics. https://doi.org/10.2217/epi-2016-0179

  • Axelrad MA, Atzmon G (2013) Epigenomic of aging. Genetics 2(1):e106. https://doi.org/10.4172/2161-1041.1000e106

    Article  Google Scholar 

  • Beekman M, Blanché H, Perola M et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell. https://doi.org/10.1111/acel.12039

  • Bergman A, Atzmon G, Ye K et al (2007) Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging. PLoS Comput Biol 3(8):e170. https://doi.org/10.1371/journal.pcbi.0030170

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. https://doi.org/10.1016/j.cell.2006.02.041

  • Birney E, Smith GD, Greally JM (2016) Epigenome-wide association studies and the interpretation of disease -omics. PLoS Genet 12:e1006105

    Google Scholar 

  • Biterge B, Schneider R (2014) Histone variants: key players of chromatin. Cell Tissue Res 356:457

    Google Scholar 

  • Bjornsson HT, Sigurdsson MI, Fallin MD et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA. https://doi.org/10.1001/jama.299.24.2877

  • Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53

    Google Scholar 

  • Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9:773

    Google Scholar 

  • Broer L, Buchman AS, Deelen J et al (2015) GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glu166

  • Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132:1323

    Google Scholar 

  • Byun HM, Siegmund KD, Pan F et al (2009) Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet. https://doi.org/10.1093/hmg/ddp445

  • Cao X, Dang W (2018) Histone modification changes during aging: cause or consequence? – what we have learned about epigenetic regulation of aging from model organisms. In: Epigenetics of aging and longevity. Academic, London

    Google Scholar 

  • Cardoso AL, Fernandes A, Aguilar-Pimentel JA et al (2018) Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 47:214

    Google Scholar 

  • Chen HP, Zhao YTZT (2015) Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 20:35

    Google Scholar 

  • Drinkwater RD, Blake TJ, Morley AA, Turner DR (1989) Human lymphocytes aged in vivo have reduced levels of methylation in transcriptionally active and inactive DNA. Mutat Res DNAging. https://doi.org/10.1016/0921-8734(89)90038-6

  • Erikson GA, Bodian DL, Rueda M et al (2016) Whole-Genome sequencing of a healthy aging cohort. Cell. https://doi.org/10.1016/j.cell.2016.03.022

  • Fang EF, Scheibye-Knudsen M, Chua KF et al (2016) Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 17:308

    Google Scholar 

  • Ferri E, Gussago C, Casati M et al (2019) Apolipoprotein E gene in physiological and pathological aging. Mech Ageing Dev. https://doi.org/10.1016/j.mad.2019.01.005

  • Field AE, Robertson NA, Wang T et al (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71:882

    Google Scholar 

  • Fraser J, Williamson I, Bickmore WA, Dostie J (2015) An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.00006-15

  • Freudenberg-Hua Y, Freudenberg J, Vacic V et al (2014) Disease variants in genomes of 44 centenarians. Mol Genet Genomic Med. https://doi.org/10.1002/mgg3.86

  • Fuke C, Shimabukuro M, Petronis A et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. https://doi.org/10.1046/j.1529-8817.2004.00081.x

  • Gao W, Tan J, Hüls A et al (2017) Genetic variants associated with skin aging in the Chinese Han population. J Dermatol Sci. https://doi.org/10.1016/j.jdermsci.2016.12.017

  • Ghirlando R, Felsenfeld G (2016) CTCF: making the right connections. Genes Dev 30:881

    Google Scholar 

  • Gillette TG, Hill JA (2015) Readers, writers, and erasers: Chromatin as the whiteboard of heart disease. Circ Res 116:1245

    Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR et al (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0402943101

  • Goll MG, Kirpekar F, Maggert KA, et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science (80-). https://doi.org/10.1126/science.1120976

  • Gonzalo S (2010) Epigenetic alterations in aging. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00238.2010

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science (80-) 333:1109

    Google Scholar 

  • Grillari J, Grillari-Voglauer R (2010) Novel modulators of senescence, aging, and longevity: small non-coding RNAs enter the stage. Exp Gerontol 45:302

    Google Scholar 

  • Gurinovich A, Bae H, Andersen S et al (2018) Ethnic-specific effect of Apoe alleles on extreme longevity. Innov Aging. https://doi.org/10.1093/geroni/igy023.373

  • Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. https://doi.org/10.1016/j.molcel.2012.10.016

  • Heshmati A (2018) Healthy aging as a solution to the ‘ticking time bomb’: dealing with aging population in urban china. Sociol Int J. https://doi.org/10.15406/sij.2018.02.00038

  • Heyn H, Li N, Ferreira HJ et al (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1120658109

  • Hödl M, Basler K (2012) Transcription in the absence of histone H3.2 and H3K4 methylation. Curr Biol. https://doi.org/10.1016/j.cub.2012.10.008

  • Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71

    Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol. https://doi.org/10.1186/gb-2013-14-10-r115

  • Huan T, Chen G, Liu C et al (2018) Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell. https://doi.org/10.1111/acel.12687

  • Huang F, Yi J, Zhou T et al (2017) Toward understanding non-coding RNA roles in intracranial aneurysms and subarachnoid hemorrhage. Transl Neurosci. https://doi.org/10.1515/tnsci-2017-0010

  • Ishimi Y, Masatoyo Kojima, Fujio Takeuchi, Terumasa Miyamoto, Masa-Atsu Yamada, Fumio Hanaoka (1987) Changes in chromatin structure during aging of human skin fibroblasts. Experimental Cell Research 169(2):458–467

    Google Scholar 

  • Jin B, Li Y, Robertson KD (2011) DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2:607

    Google Scholar 

  • Jin F, Li Y, Dixon JR et al (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. https://doi.org/10.1038/nature12644

  • Jintaridth P, Mutirangura A (2010) Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics. https://doi.org/10.1152/physiolgenomics.00146.2009

  • Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25:57

    Google Scholar 

  • Kim S, Wyckoff J, Morris AT et al (2018) DNA methylation associated with healthy aging of elderly twins. GeroScience. https://doi.org/10.1007/s11357-018-0040-0

  • Kronenberg F (2008) Genome-wide association studies in aging-related processes such as diabetes mellitus, atherosclerosis and cancer. Exp Gerontol 43:39

    Google Scholar 

  • Lin E, Tsai SJ, Kuo PH et al (2017) The rs1277306 variant of the REST gene confers susceptibility to cognitive aging in an elderly Taiwanese population. Dement Geriatr Cogn Disord. https://doi.org/10.1159/000455833

  • Lipman T, Tiedje LB (2006) Epigenetic differences arise during the lifetime of monozygotic twins. MCN Am J Matern Child Nurs. https://doi.org/10.1097/00005721-200605000-00016

  • Lombard DB, Chua KF, Mostoslavsky R et al (2005) DNA repair, genome stability, and aging. Cell 120:497

    Google Scholar 

  • López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell. https://doi.org/10.1016/j.cell.2013.05.039

  • Macedo JC, Vaz S, Logarinho E (2017) Mitotic dysfunction associated with aging hallmarks. Adv Exp Med Biol 1002:153

    Google Scholar 

  • Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81

    Google Scholar 

  • Marta Kulis ME (2010) 2 – DNA methylation and cancer. ScienceDirect 70:27–56

    Google Scholar 

  • Massudi H, Grant R, Guillemin GJ, Braidy N (2012) NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep. https://doi.org/10.1179/1351000212y.0000000001

  • Mcclay JL, Aberg KA, Clark SL et al (2014) A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet. https://doi.org/10.1093/hmg/ddt511

  • Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431:338

    Google Scholar 

  • Murabito JM, Yuan R, Lunetta KL (2012) The search for longevity and healthy aging genes: Insights from epidemiological studies and samples of long-lived individuals. J Gerontol Ser A Biol Sci Med Sci. https://doi.org/10.1093/gerona/gls089

  • Noren Hooten N, Fitzpatrick M, Wood WH et al (2013) Age-related changes in microRNA levels in serum. Aging (Albany NY) 5:725

    Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907

    Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. https://doi.org/10.1016/S0092-8674(00)81656-6

  • Ooi SKT, Qiu C, Bernstein E et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. https://doi.org/10.1038/nature05987

  • Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol:1261–1267

    Google Scholar 

  • Pérez RF, Tejedor JR, Bayón GF et al (2018) Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. https://doi.org/10.1111/acel.12744

  • Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170

    Google Scholar 

  • Pidsley R, Zotenko E, Peters TJ et al (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. https://doi.org/10.1186/s13059-016-1066-1

  • Ruby JG, Wright KM, Rand KA et al (2018) Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. https://doi.org/10.1534/genetics.118.301613

  • Sathyan S, Barzilai N, Atzmon G et al (2018) Genetic insights into frailty: association of 9p21-23 locus with frailty. Front Med. https://doi.org/10.3389/fmed.2018.00105

  • Schübeler D (2015) Function and information content of DNA methylation. Nature

    Google Scholar 

  • Seddighi S, Varma VR, An Y et al (2018) SPARCL1 accelerates symptom onset in Alzheimer’s disease and influences brain structure and function during aging. J Alzheimers Dis. https://doi.org/10.3233/JAD-170557

  • Sharma S, De Carvalho DD, Jeong S, Jones PA, Liang G (2011) Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet 7:e1001286

    Google Scholar 

  • Shumaker DK, Dechat T, Kohlmaier A et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0602569103

  • Singh KK (2004) Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann N Y Acad Sci 1019:260

    Google Scholar 

  • Slieker RC, Relton CL, Gaunt TR et al (2018) Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin. https://doi.org/10.1186/s13072-018-0191-3

  • Somel M, Guo S, Fu N et al (2010) MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. https://doi.org/10.1101/gr.106849.110

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41

    Google Scholar 

  • Sturmlechner I, Durik M, Sieben CJ et al (2017) Cellular senescence in renal ageing and disease. Nat Rev Nephrol. https://doi.org/10.1038/nrneph.2016.183

  • Sundermann E, Levine A, Horvath S, Moore D (2018) Inflammation-related genes are associated with accelerated aging in HIV. Am J Geriatr Psychiatry 26:S118

    Google Scholar 

  • Takeshima H, Yamashita S, Shimazu T et al (2009) The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res. https://doi.org/10.1101/gr.093310.109

  • Tasselli L, Zheng W, Chua KF (2017) SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab 28:168

    Google Scholar 

  • Theendakara V, Peters-Libeu CA, Bredesen DE, Rao RV (2018) Transcriptional effects of ApoE4: relevance to Alzheimer’s disease. Mol Neurobiol 55:5243

    Google Scholar 

  • Unda SR, Villegas EA (2017) MicroRNA: a major key in pain neurobiology. Int J Cell Sci Mol Biol 3(5):555621. https://doi.org/10.19080/ijcsmb.2017.03.555621

    Article  Google Scholar 

  • Vijg J, Dong X, Milholland B, Zhang L (2017) Genome instability: a conserved mechanism of ageing? Essays Biochem:305–315

    Google Scholar 

  • Vijg J, Gravina S, Dong X (2018) Chapter 9 – Intratissue DNA methylation heterogeneity in aging. ScienceDirect 4:201–209

    Google Scholar 

  • Wang T, Zhang M, Jiang ZSE (2017) Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol 77:e12651

    Google Scholar 

  • Wang Y, Yuan Q, Xie L (2018) Histone modifications in aging: the underlying mechanisms and implications. Curr Stem Cell Res Ther. https://doi.org/10.2174/1574888x12666170817141921

  • Warner HR (2005) Longevity genes: from primitive organisms to humans. Mech Ageing Dev 126(2):235

    Google Scholar 

  • Wegman MP, Guo MH, Bennion DM et al (2014) Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. https://doi.org/10.1089/rej.2014.1624

  • Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta Bioenerg 1817:1833

    Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science (80-). https://doi.org/10.1126/science.6844925

  • Ye K et al (2013) Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs. Twin Res Hum Genet 16:1026–1032

    Google Scholar 

  • Zhang W, Li J, Suzuki K, et al (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science (80-). https://doi.org/10.1126/science.aaa1356

  • Zhao N, Liu CC, Qiao W, Bu G (2018) Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry 83:347

    Google Scholar 

  • Zirkel A, Nikolic M, Sofiadis K et al (2018) HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol Cell. https://doi.org/10.1016/j.molcel.2018.03.030

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Atzmon .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Falah, G., Gutman, D., Atzmon, G. (2021). Genomics of Aging and Longevity. In: Gu, D., Dupre, M.E. (eds) Encyclopedia of Gerontology and Population Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-22009-9_730

Download citation

Publish with us

Policies and ethics