Skip to main content

Cardiac Displacement Tracking with Data Assimilation Combining a Biomechanical Model and an Automatic Contour Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

Abstract

Data assimilation in computational models represents an essential step in building patient-specific simulations. This work aims at circumventing one major bottleneck in the practical use of data assimilation strategies in cardiac applications, namely, the difficulty of formulating and effectively computing adequate data-fitting term for cardiac imaging such as cine MRI. We here provide a proof-of-concept study of data assimilation based on automatic contour detection. The tissue motion simulated by the data assimilation framework is then assessed with displacements extracted from tagged MRI in six subjects, and the results illustrate the performance of the proposed method, including for circumferential displacements, which are not well extracted from cine MRI alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Inria, Project-Team Gamma.

  2. 2.

    https://gitlab.inria.fr/MoReFEM.

References

  1. Chabiniok, R., Moireau, P., Lesault, P.F., Rahmouni, A., Deux, J.F., Chapelle, D.: Estimation of tissue contractility from cardiac cine MRI using a biomechanical heart model. Biomech. Model Mechanobiol. 11(5), 609–30 (2012)

    Article  Google Scholar 

  2. Chapelle, D., Fragu, M., Mallet, V., Moireau, P.: Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med. Biol. Eng. Comput. 51(11), 1221–1233 (2013)

    Article  Google Scholar 

  3. Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: An energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. 10(2), 189–211 (2012)

    Article  Google Scholar 

  4. Ecabert, O., et al.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27(9), 1189 (2008)

    Article  Google Scholar 

  5. Genet, M., Stoeck, C.T., von Deuster, C., Lee, L.C., Kozerke, S.: Equilibrated warping: finite element image registration with finite strain equilibrium gap regularization. Med. Image Anal. 50, 1–22 (2018)

    Article  Google Scholar 

  6. Giorgi, B., Dymarkowski, S., Maes, F., Kouwenhoven, M., Bogaert, J.: Improved visualization of coronary arteries using a new three-dimensional submillimeter MR coronary angiography sequence with balanced gradients. Am. J. Roentgenol. 179(4), 901–910 (2002)

    Article  Google Scholar 

  7. Hadjicharalambous, M., et al.: Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomechan. Model. Mechanobiol. 14(4), 807–828 (2015)

    Article  Google Scholar 

  8. Holzapfel, G., Ogden, R.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. Roy. Soc. London: Math. Phys. Eng. Sci. 367(1902), 3445–3475 (2009)

    Article  MathSciNet  Google Scholar 

  9. Imperiale, A., Routier, A., Durrleman, S., Moireau, P.: Improving efficiency of data assimilation procedure for a biomechanical heart model by representing surfaces as currents. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 342–351. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38899-6_41

    Chapter  Google Scholar 

  10. Kerfoot, E., et al.: Eidolon: visualization and computational framework for multi-modal biomedical data analysis. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 425–437. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_39

    Chapter  Google Scholar 

  11. Klotz, S., et al.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291, H403–H412 (2006)

    Article  Google Scholar 

  12. Moireau, P., Chapelle, D., Le Tallec, P.: Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging. Inverse Prob. 25(3), 035010 (2009). (25pp)

    Article  MathSciNet  Google Scholar 

  13. Moireau, P., et al.: Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech. Model. Mechanobiol. 12(3), 475–496 (2013)

    Article  Google Scholar 

  14. Peters, J., Ecabert, O., Meyer, C., Kneser, R., Weese, J.: Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med. Image Anal. 14(1), 70–84 (2010)

    Article  Google Scholar 

  15. Rausch, M.K., Genet, M., Humphrey, J.D.: An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling. J. Biomech. 58, 227–231 (2017)

    Article  Google Scholar 

  16. Rutz, A., Ryf, S., Plein, S., Boesiger, P., Kozerke, S.: Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn. Reson. Med. 59, 755–763 (2008)

    Article  Google Scholar 

  17. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84(28), 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  18. Shi, W., et al.: A comprehensive cardiac motion estimation framework using both untagged and 3D tagged MR images based on non-rigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012)

    Article  Google Scholar 

Download references

Acknowlegement

The authors acknowledge financial support from the Department of Health through the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and the NIHR Cardiovascular MedTech Co-operative (previously existing as the Cardiovascular Healthcare Technology Co-operative 2012–2017), the support of Wellcome/EPSRC Centre for Medical Engineering [WT 203148/Z/16/Z]. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Moireau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chabiniok, R. et al. (2019). Cardiac Displacement Tracking with Data Assimilation Combining a Biomechanical Model and an Automatic Contour Detection. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics