Skip to main content

Tissue Engineering in Periodontal Regeneration

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry

Abstract

Periodontal diseases have become exceedingly widespread, and management of the defects due to periodontitis has been a great challenge in periodontal therapies. In the last two decades, concerted efforts have aimed to improve periodontal tissue regeneration by bone grafting and guided tissue regeneration. Recent studies have focused on tissue engineering (TE) techniques for periodontal regeneration using stem cells, growth factors, and scaffolds to grow new functional tissues, rather than building replacements for lost periodontal tissues. The future of periodontal regeneration research requires an understanding of current findings, which in turn highlights the need for future research. In this chapter, we review recent progress in periodontal tissue regeneration and current tissue engineering approaches. The advantages and disadvantages of this method in clinical practice will be also discussed based on recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, F.-M., & Jin, Y. (2010). Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Engineering: Part B, 16, 219–225.

    Article  Google Scholar 

  2. Dabra, S., Chhina, K., Soni, N., & Bhatnagar, R. (2012). Tissue engineering in periodontal regeneration: A brief review. Dental Research Journal, 9, 671–680.

    Article  Google Scholar 

  3. Ivanovski, S., Bartold, P. M., Gronthos, S., & Hutmacher, D. W. (2017). Periodontal tissue engineering. In R. J. Waddington & A. J. Sloan (Eds.), Tissue engineering and regeneration in dentistry: Current strategies. West Sussex, UK, Wiley.

    Google Scholar 

  4. Babo, P. S., Reis, R. L., & Gomes, M. E. (2017). Periodontal tissue engineering: Current strategies and the role of platelet rich hemoderivatives. Journal of Materials Chemistry B, 5, 3617.

    Article  Google Scholar 

  5. Maeda, H., Wada, N., Fujii, S., Tomokiyo, A., & Akamine, A. (2011). Periodontal ligament stem cells. In A. Gholamrezanezhad (Ed.), Stem cells in clinic and research. London, InTech.

    Google Scholar 

  6. Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809.

    Article  Google Scholar 

  7. Al-Shammari, K. F., Al-Khabbaz, A. K., Al-Ansari, J. M., Neiva, R., & Wang, H. L. (2005). Risk indicators for tooth loss due to periodontal disease. Journal of Periodontology, 76, 1910.

    Article  Google Scholar 

  8. Chen, F.-M., & Shi, S. (2014). Periodontal tissue engineering, in Principles of Tissue Engineering (pp. 1507–1540). 4th edn, ed. by R. Vacanti, R. Lanza and J. Langer. Boston, MA, Academic Press.

    Google Scholar 

  9. Grover, V., Malhorta, R., Kapoor, A., Verma, N., & Sahota, J. K. (2010). Future of periodontal regeneration. Journal of Oral Health Community Dentistry, 4, 38–47.

    Google Scholar 

  10. Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventive medicine. Science, 306, 640–643.

    Article  Google Scholar 

  11. Galler, K. M., & D’Souza, R. N. (2011). Tissue engineering approaches for regenerative dentistry. Regenerative Medicine, 6, 111–124.

    Article  Google Scholar 

  12. Abou Neel, E. A., Chrzanowski, W., Salih, V. M., Kim, H. W., & Knowles, J. C. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42, 915–928.

    Article  Google Scholar 

  13. Silva, C. R., Gomez-Florit, M., Babo, P. S., Reis, R. L., & Gomes, M. E. (2017). 3D functional scaffolds for dental tissue engineering. In Y. Deng & J. Kuiper (Eds.), Functional 3D tissue engineering scaffolds.

    Google Scholar 

  14. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.

    Article  Google Scholar 

  15. Chen, F. M., Zhang, J., Zhang, M., An, Y., Chen, F., & Wu, Z. F. (2010). A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 31, 7892–7927.

    Article  Google Scholar 

  16. Yang, J., Yamato, M., Kohno, C., Nishimoto, A., Sekine, H., Fukai, F., & Okano, T. (2005). Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials, 26, 6415–6422.

    Article  Google Scholar 

  17. Iwata, T., Yamato, M., Ishikawa, I., Ando, T., & Okano, T. (2014). Tissue engineering in periodontal tissue. The Anatomical Record, 297, 16–25.

    Article  Google Scholar 

  18. Esposito, M., Grusovin, M. G., Papanikolaou, N., Coulthard, P., & Worthington, H. V. (2009). Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev, CD003875.

    Google Scholar 

  19. Mellonig, J. T. (1992). Autogenous and allogeneic bone grafts in periodontal therapy. Critical Reviews in Oral Biology and Medicine, 3, 333–352.

    Article  Google Scholar 

  20. King, J. A., & Miller, W. M. (2007). Bioreactor development for stem cells expansion and controlled differentiation. Current Opinion in Chemical Biology, 11, 394–398.

    Article  Google Scholar 

  21. Hosokawa, K., Arai, F., Yoshihara, H., Nakamura, Y., Gomei, Y., Iwasaki, H., Ito, K., & Suda, T. (2007). Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochemical and Biophysical Research Communications, 363, 578–583.

    Article  Google Scholar 

  22. Shimauchi, H., Nemoto, E., Ishihata, H., & Shimomura, M. (2013). Possible functional scaffolds for periodontal regeneration. Japanese Dental Science Review, 49, 118–130.

    Article  Google Scholar 

  23. Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2, 224–247.

    Article  Google Scholar 

  24. Roberts, T. T., & Rosenbaum, A. J. (2012). Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis, 8, 114–124.

    Article  Google Scholar 

  25. Goldberg, V. M., & Akhavan, S. (2005). Biology of bone grafts. In J. R. Lieberman & G. E. Friedlaender (Eds.), Bone regeneration and repair (pp. 57–65). Totowa, NJ. Springer.

    Google Scholar 

  26. Stevenson, S., & Horowitz, M. (1992). The response to bone allografts. The Journal of Bone and Joint Surgery, 74, 939–950.

    Article  Google Scholar 

  27. Kumar, P., Vinitha, B., & Fathima, G. (2013). Bone grafts in dentistry. Journal of Pharmacy & Bioallied Sciences, 5(Suppl 1), S125–S127.

    Article  Google Scholar 

  28. Hjørting-Hansen, E. (2002). Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery: A historical review. Mund-, Kiefer- und Gesichtschirurgie, 6(1), 6–14.

    Article  Google Scholar 

  29. Burchardt, H. (1983). The biology of bone graft repair. Clinical Orthopaedics and Related Research, 174, 28–42.

    Google Scholar 

  30. Cordaro, L., Amade, D. S., & Cordaro, M. (2002). Clinical results of alveolar ridge augmentation with mandibular block bone grafts in partially edentulous patients prior to implant placement. Clinical Oral Implants Research, 13(1), 103–111.

    Article  Google Scholar 

  31. Garraway, R., Young, W. G., Daley, T., Harbow, D., & Bartold, P. M. (1998). An assessment of the osteoinductive potential of commercial demineralized freeze dried bone in the murine thing muscle implantation model. Journal of Periodontal, 69(12), 1325–1336.

    Article  Google Scholar 

  32. Thomas, G. V., Thomas, N. G., John, S., & Ittycheria, P. G. (2015). The scope of stem cells in periodontal regeneration. Journal of Dental Oral Disorders and Therapy, 3(2), 1–9.

    Google Scholar 

  33. Kinaia, B. M., Chogle, S. M. A., Kinaia, A. M., & Goodis, H. E. (2012). Regenerative therapy: A periodontal-endodontic perspective. Dental Clinics of North America, 56(3), 537–547.

    Article  Google Scholar 

  34. Ledesma-Martínez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: A review. Stem Cells International, 2016, 4709572.

    Google Scholar 

  35. Melcher, A. H., McCulloch, C. A., Cheong, T., Nemeth, E., & Shiga, A. (1987). Cells from bone synthesize cementum-like and bone-like tissue in vitro and may migrate into periodontal ligament in vivo. Journal of Periodontal Research, 22, 246–247.

    Article  Google Scholar 

  36. Karring, T., Nyman, S., Gottlow, J., & Laurell, L. (1993). Development of the biological concept of guided tissue regeneration-animal and human studies. Periodontology, 2000(1), 26–35.

    Article  Google Scholar 

  37. Buser, D., Warrer, K., & Karring, T. (1990). Formation of a periodontal ligament around titanium implants. Journal of Periodontology, 61, 597–601.

    Article  Google Scholar 

  38. Clem, D. S., & Bishop, J. P. (1991). Guided tissue regeneration in periodontal therapy. Journal of the California Dental Association, 19, 67.

    Google Scholar 

  39. Caffesse, R. G., & Becker, W. (1991). Principles and techniques of guided tissue regeneration. Dental Clinics of North America, 35, 479.

    Google Scholar 

  40. Needleman, I., Tucker, R., Giedrys-Leeper, E., & Worthington, H. (2005). Guided tissue regeneration for periodontal intrabony defects-a Cochrane systematic review. Periodontology 2000, 2000(37), 106.

    Article  Google Scholar 

  41. Phillips, J. D., & Palou, M. E. (1992). A review of the guided tissue regeneration concept. General Dentistry, 40, 118.

    Google Scholar 

  42. Murphy, K. G., & Gunsolley, J. C. (2003). Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Annals of Periodontology, 8, 266.

    Article  Google Scholar 

  43. Gottlow, J., Nyman, S., Karring, T., & Lindhe, J. (1984). New attachment formation as the result of controlled tissue regeneration. Journal of Clinical Periodontology, 11, 494–503.

    Article  Google Scholar 

  44. Siaili, M., Chatzopoulou, D., & Gillam, D. G. (2018). An overview of periodontal regenerative procedures for the general dental practitioner. Saudi Dental Journal, 30, 26–37.

    Article  Google Scholar 

  45. Aichelmann-Reidy, M. E., & Reynolds, M. A. (2008). Predictability of clinical outcomes following regenerative therapy in intrabony defects. Journal of Periodontology, 79, 387.

    Article  Google Scholar 

  46. Zeichner-David, M. (2006). Regeneration of periodontal tissues: Cementogenesis revisited. Periodontology 2000, 2000(41), 196.

    Article  Google Scholar 

  47. Grzesik, W. J., & Narayanan, A. S. (2002). Cementum and periodontal wound healing and regeneration. Critical Reviews in Oral Biology and Medicine, 13, 474.

    Article  Google Scholar 

  48. Lin, N. H., Menicacin, D., Mrozik, K., Gronthos, S., & Bartold, P. M. (2008). Putative stem cells in regenerating human periodontium. Journal of Periodontal Research, 53, 514–523.

    Google Scholar 

  49. Hynes, K., Menicanin, D., Gronthos, S., & Bartold, P. M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 59(1), 203–227.

    Article  Google Scholar 

  50. Zhu, W., & Liang, M. (2015). Periodontal ligament stem cells: Current status, concerns, and future prospects. Stem Cells International, 972313, 1–11.

    Google Scholar 

  51. Yamada, Y., Ueda, M., Hibi, H., & Baba, S. (2006). A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: A clinical case report. International Journal of Periodontics and Restorative Dentistry, 26(4), 363–369.

    Google Scholar 

  52. Huang, G. T. J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.

    Article  Google Scholar 

  53. Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., Young, M., Robey, P. G., Wang, C. Y., & Shi, S. (2004). Investigation of multipotent stem cells from human periodontal ligament. The Lancet, 364(9429), 149–155.

    Article  Google Scholar 

  54. Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T.-J. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics, 34(2), 166–171.

    Article  Google Scholar 

  55. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.

    Article  Google Scholar 

  56. Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., & Le, A. D. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation related tissue destruction in experimental colitis. The Journal of Immunology, 183(12), 7787–7798.

    Article  Google Scholar 

  57. Hynes, K., Menicanin, D., Gronthos, S., & Bartold, P. M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontology 2000, 59, 203–227.

    Article  Google Scholar 

  58. Chai, Y., Jiang, X., Ito, Y., Bringas, P. J., Han, J., Rowitch, D. H., Soriano, P., McMahon, A. P., & Sucov, H. M. (2000). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127, 1671–1679.

    Google Scholar 

  59. Bossù, M., Pacifici, A., Carbone, D., Tenore, G., Ierardo, G., Pacifici, L., & Polimeni, A. (2014). Today prospects for tissue engineering therapeutic approach in dentistry. The Scientific World Journal, 2014, 151252, 1–151252, 9.

    Article  Google Scholar 

  60. Nagatomo, K., Komaki, M., Sekiya, I., Sakaguchi, Y., Noguchi, K., Oda, S., Muneta, T., & Ishikawa, I. (2006). Stem cell properties of human periodontal ligament cells. Journal of Periodontal Research, 41(4), 303–310.

    Article  Google Scholar 

  61. Amrollahi, P., Shah, B., Seifi, A., & Tayebi, L. (2016). Recent advancements in regenerative dentistry: A review. Materials Science and Engineering C, 69, 1383–1390.

    Article  Google Scholar 

  62. Bhandari, R. N., Riccalton, L. A., Lewis, A. L., Fry, J. R., Hammond, A. H., Tendler, S. J., & Shakesheff, K. M. (2001). Liver tissue engineering: A role for co-culture systems in modifying hepatocyte function and viability. Tissue Engineering, 7(3), 345–357.

    Article  Google Scholar 

  63. Beltrán-Aguilar, E. D., Barker, L., Canto, M., Dye, B., Gooch, B., Griffin, S., et al. (2005). Centers for Disease Control and Prevention (CDC). Surveillance for dental caries, dental sealants, tooth retention, edentulism, and enamel fluorosis—United States, 1988–1994 and 1999–2002. MMWR Surveillance Summaries, 54(3), 1–43.

    Google Scholar 

  64. Wada, N., Menicanin, D., Shi, S., Bartold, P. M., & Gronthos, S. (2009). Immunomodulatory properties of human periodontal ligament stem cells. Journal of Cellular Physiology, 219(3), 667–676.

    Article  Google Scholar 

  65. Gay, I. C., Chen, S., & MacDougall, M. (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodontics and Craniofacial Research, 10(3), 149–160.

    Article  Google Scholar 

  66. Lang, H., Schuler, N., & Nolden, R. (1998). Attachment formation following replantation of cultured cells into periodontal defects: A study in minipigs. Journal of Dental Research, 77, 393–405.

    Article  Google Scholar 

  67. Isaka, J., Ohazama, A., Kobayashi, M., Nagashima, C., Takiguchi, T., Kawasaki, H., Tachikawa, T., & Hasegawa, K. (2001). Participation of periodontal ligament cells with regeneration of alveolar bone. Journal of Periodontology, 72, 314–323.

    Article  Google Scholar 

  68. Dogan, A., Ozdemir, A., Kubar, A., & Oygur, T. (2002). Assessment of periodontal healing by seeding of fibroblast like cells derived from regenerated periodontal ligament in artificial furcation defects in a dog: A pilot study. Tissue Engineering, 8, 273–282.

    Article  Google Scholar 

  69. Dogan, A., Ozdemir, A., Kubar, A., & Oygur, T. (2003). Healing of artificial fenestration defects by seeding of fibroblast-like cells derived from regenerated periodontal ligament in a dog: A preliminary study. Tissue Engineering, 9, 1189–1196.

    Article  Google Scholar 

  70. Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., Young, M., Robey, P. G., Wang, C. Y., & Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364, 149–155.

    Article  Google Scholar 

  71. Park, J.-Y., Jeon, S. H., & Choung, P.-H. (2011). Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplantation, 20(2), 271–285.

    Article  Google Scholar 

  72. Liu, Y., Zheng, Y., Ding, G., Fang, D., Zhang, C., Bartold, P. M., Gronthos, S., Shi, S., & Wang, S. (2008). Periodontal ligament stem cell mediated treatment for periodontitis in miniature swine. Stem Cells, 26(4), 1065–1073.

    Article  Google Scholar 

  73. Huang, C. Y., Pelaez, D., Dominguez-Bendala, J., Garcia-Godoy, F., & Cheung, H. S. (2009). Plasticity of stem cells derived from adult periodontal ligament. Regenerative Medicine, 4(6), 809–821.

    Article  Google Scholar 

  74. Dan, H., Vaquette, C., Fisher, A., Hamlet, S. M., Xiao, Y., Hutmacher, D. W., & Ivanovski, S. (2014). The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials, 35, 113–122.

    Article  Google Scholar 

  75. Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., et al. (2005). Matrix Biology, 24, 155–165.

    Article  Google Scholar 

  76. Sethi, M., Dua, A., & Dodwad, V. (2012). Stem cells: A window to regenerative dentistry. International Journal of Pharmaceutical Biomedical Research, 3(3), 175–180.

    Google Scholar 

  77. Yao, S., Pan, F., Prpic, V., & Wise, G. E. (2008). Differentiation of stem cells in the dental follicle. Journal of Dental Research, 87, 767–771.

    Article  Google Scholar 

  78. Morsczeck, C., Gotz, W., Schierholz, J., Zeilhofer, F., Kuhn, U., Mohl, C., & Hoffmann, K. H. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24, 155–165.

    Article  Google Scholar 

  79. Yokoi, T., Saito, M., Kiyono, T., Iseki, S., Kosaka, K., Nishida, E., Tsubakimoto, T., Harada, H., Eto, K., Noguchi, T., & Teranaka, T. (2007). Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell and Tissue Research, 327(2), 301–311.

    Article  Google Scholar 

  80. Bai, Y., Bai, K., Matsuzaka, S., Hashimoto, S., Fukuyama, T., Wu, L., Miwa, T., Liu, X., Wang, X., & Inoue, T. (2011). Cementum-and periodontal ligament–like tissue formation by dental follicle cell sheets co-cultured with Hertwig’s epithelial root sheath cells. Bone, 48, 1417–1426.

    Article  Google Scholar 

  81. Okuda, K., Momose, M., Murata, M., Saito, Y., lnoie, M., Shinohara, C., Wolff, L. F., & Yoshie, H. (2004). Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: A case report. The International Journal of Periodontics Restorative Dentistry, 24, 119–125.

    Google Scholar 

  82. Mohammadi, M., Shokrgozar, M. A., & Mofid, R. (2007). Culture of human gingival fibroblasts on a biodegradable scaffold and evaluation of its effect on attached gingiva: A randomized, controlled pilot study. Journal of Periodontology, 78, 1897–1903.

    Article  Google Scholar 

  83. McGuire, M. K., Scheyer, E. T., Nevins, M. L., Neiva, R., Cochran, D. L., Mellonig, J. T., Giannobile, W. V., & Bates, D. (2011). Living cellular construct for increasing the width of keratinized gingiva: Results from a randomized, within-patient, controlled trial. Journal of Periodontology, 82, 1414–1423.

    Article  Google Scholar 

  84. Allen, M. R., Hock, J. M., & Burr, D. B. (2004). Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone, 35, 1003–1012.

    Article  Google Scholar 

  85. Yamamiya, K., Okuda, K., Kawase, T., Hata, K., Wolff, L. F., & Yoshie, H. (2008). Tissue-engineered cultured periosteum used with platelet-rich plasma and hydroxyapatite in treating human osseous defects. Journal of Periodontology, 79, 811–818.

    Article  Google Scholar 

  86. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

    Article  Google Scholar 

  87. Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29, 532–539.

    Article  Google Scholar 

  88. Arthur, A., Shi, S., Zannettino, A. C. W., Fujii, N., Gronthos, S., & Koblar, S. A. (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells, 27(9), 2229–2237.

    Article  Google Scholar 

  89. Gronthos, S., Brahim, J., Li, W., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.

    Article  Google Scholar 

  90. Ishkitiev, N., Yaegaki, K., Calenic, B., et al. (2010). Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. Journal of Endodontics, 36(3), 469–474.

    Article  Google Scholar 

  91. Alongi, D. J., Yamaza, T., Song, Y., et al. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative Medicine, 5(4), 617–631.

    Article  Google Scholar 

  92. Huang, A. H., Chen, Y. K., Lin, L. M., Shieh, T. Y., & Chan, A. W. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology and Medicine, 37(9), 571–574.

    Article  Google Scholar 

  93. Karaoz, E., Dogan, B. N., Aksoy, A., et al. (2010). Isolation and in vitro characterization of dental pulp stem cells from natal teeth. Histochemistry and Cell Biology, 133(1), 95–112.

    Article  Google Scholar 

  94. D’Aquino, R., De Rosa, A., Lanza, V., et al. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells and Materials, 18(7), 75–83.

    Article  Google Scholar 

  95. Zhao, Y., Wang, L., Jin, Y., & Shi, S. (2012). Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. Journal of Dental Research, 91, 948–954.

    Article  Google Scholar 

  96. Grzesik, W. J., Kuzentsov, S. A., Uzawa, K., Mankani, M., Robey, P. G., & Yamauchi, M. (1998). Normal human cementum-derived cells: Isolation, clonal expansion, and in vitro and in vivo characterization. Journal of Bone and Mineral Research, 13(10), 1547–1554.

    Article  Google Scholar 

  97. Huang, G. T.-J., El Ayachi, I., & Zou, X.-Y. (2016). Induced pluripotent stem cell technologies for tissue engineering. In R. J. Waddington & A. J. Sloan (Eds.), Tissue engineering and regeneration in dentistry.

    Google Scholar 

  98. Nakamura, S., Yamada, Y., Katagiri, W., Sugito, T., Ito, K., & Ueda, M. (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontics, 35(11), 1536–1542.

    Article  Google Scholar 

  99. Wang, X., Sha, X.-J., Li, G.-H., et al. (2012). Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Archives of Oral Biology, 57(9), 1231–1240.

    Article  Google Scholar 

  100. Sonoyama, W., Liu, Y., Fang, D., et al. (2006). Mesenchymal stem cell mediated functional tooth regeneration in swine. PLoS One, 1(1), e79.

    Article  Google Scholar 

  101. Bakopoulou, A., Leyhausen, G., Volk, J., et al. (2011). Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Archives of Oral Biology, 56(7), 709–721.

    Article  Google Scholar 

  102. Abe, S., Hamada, K., Miura, M., & Yamaguchi, S. (2012). Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biology International, 36(10), 927–936.

    Article  Google Scholar 

  103. Ding, G., Liu, Y., An, Y., et al. (2010). Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells, Tissues, Organs, 191(5), 357–364.

    Article  Google Scholar 

  104. Yagyuu, T., Ikeda, E., Ohgushi, H., et al. (2010). Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. Archives of Oral Biology, 55(1), 68–76.

    Article  Google Scholar 

  105. Bianco, P., Riminucci, M., Gronthos, S., & Robey, P. G. (2001). Bone marrow stromal stem cells: Nature, biology and potential applications. Stem Cells, 19(3), 180–192.

    Article  Google Scholar 

  106. Mehta, D. S., Jyothy, T. M., & Kumar, T. (2005). Stem cells in dentofacial research-at the cross roads. J. Indian. Soc. Periodontol., 9, 91–108.

    Google Scholar 

  107. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  Google Scholar 

  108. Kuo, T. F., Lin, H. C., Yang, K. C., Lin, F. H., Chen, M. H., Wu, C. C., et al. (2011). Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artificial Organs, 35, 113–121.

    Google Scholar 

  109. Kawaguchi, H., Hirachi, A., Hasegawa, N., Iwata, T., Hamaguchi, H., Shiba, H., et al. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. Journal of Periodontology, 75, 1281–1287.

    Article  Google Scholar 

  110. Fiorina, P., Jurewicz, M., Augello, A., Vergani, A., Dada, S., La Rosa, S., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183, 993–1004.

    Article  Google Scholar 

  111. Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25, 2648–2659.

    Article  Google Scholar 

  112. Locke, M. B., & J, V. (2015). Human, adipose-derived stem cells (ASC): Their efficacy in clinical applications. In Regenerative medicine: Springer (pp. 135–149).

    Google Scholar 

  113. Bassir, S. H., Wisitrasameewong, W., Raanan, J., Ghaffarigarakani, S., Chung, J., Freire, M., Andrada, L. C., & Intini, G. (2016). Potential for stem cell-based periodontal therapy. Journal of Cellular Physiology, 231(1), 50–61.

    Article  Google Scholar 

  114. Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362–369.

    Article  Google Scholar 

  115. Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., & Jung, J. S. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 14(4–6), 311–324.

    Article  Google Scholar 

  116. Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., & Casteilla, L. (2004). Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation, 109(5), 656–663.

    Article  Google Scholar 

  117. Tobita, M., Uysal, A. C., Ogawa, R., Hyakusoku, H., & Mizuno, H. (2008). Periodontal tissue regeneration with adipose-derived stem cells. Tissue Engineering. Part A, 14, 945–953.

    Article  Google Scholar 

  118. Bennett, N. T., & Schultz, G. S. (1993). Growth factors and wound healing: Biochemical properties of growth factors and their receptors. American Journal of Surgery, 165, 728–737.

    Article  Google Scholar 

  119. Alluri, S. V., Bhola, S., Gangavati, R., Shirlal, S., & Belgaumi, U. (2012). Tissue engineering in periodontics -a novel therapy. Annals of Dental Research, 2(1), 01–07.

    Google Scholar 

  120. Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy. Periodontology 2000, 56(1), 188–208.

    Article  Google Scholar 

  121. Kastin, A. (2013). Handbook of biologically active peptides. San Diego, CA. Academic Press.

    Google Scholar 

  122. Sigurdsson, T. J., Lee, M. B., & Kubota, K. (1995). Periodontal repair in dogs: Recombinant bone morphogenetic protein 2 significantly enhances periodontal regeneration. Journal of Periodontology, 66, 131–138.

    Article  Google Scholar 

  123. Wozney, J. M. (1995). The potential role of bone morphogenetic proteins in periodontal reconstruction. Journal of Periodontology, 66(6), 506–510.

    Article  Google Scholar 

  124. Heijl, L., Heden, G., Svärdström, G., & Ostgren, A. (1997). Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. Journal of Clinical Periodontology, 24, 705–714.

    Article  Google Scholar 

  125. Del Fabbro, M., Bortolin, M., Taschieri, S., & Weinstein, R. (2011). Is platelet concentrate advantageous for the surgical treatment of periodontal diseases? A systematic review and meta-analysis. J. Periodontology 2000, 82, 1100–1111.

    Google Scholar 

  126. Giannobile, W. V., Hernandez, R. A., Finkelman, R. D., Ryan, S., Kiritsy, C. P., D’Andrea, M., & Lynch, S. E. (1996). Comparative effects of platelet derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis. Journal of Periodontal Research, 31, 301–312.

    Article  Google Scholar 

  127. Lynch, S. E., Williams, R. C., Polson, A. M., Howell, T. H., Reddy, M. S., Zappa, U. E., & Antoniades, H. N. (1989). A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. Journal of Clinical Periodontology, 16, 545–548.

    Article  Google Scholar 

  128. Matsuda, N., Lin, W. L., Kumar, N. M., Cho, M. I., & Genco, R. J. (1992). Mitogenic, chemotactic and synthetic response of rat periodontal ligament fibroblastic cells to polypeptide growth factors in vitro. Journal of Periodontology, 63, 515–525.

    Article  Google Scholar 

  129. Nevins, M., Giannobile, W. V., McGuire, M. K., et al. (2005). Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. Journal of Periodontology, 76, 2205–2215.

    Article  Google Scholar 

  130. Cho, M., Lin, W. L., & Genco, R. J. (1995). Platelet-derived growth factor modulated guided tissue regenerative therapy. Journal of Periodontology, 66, 522–530.

    Article  Google Scholar 

  131. Nakashima, M., & Reddi, A. H. (2003). The application of bone morphogenetic proteins to dental tissue engineering. Nature Biotechnology, 21(9), 1025–1032.

    Article  Google Scholar 

  132. Kao, R. T., Murakami, S., & Beirne, O. R. (2009). The use of biologic mediators and tissue engineering in dentistry. Periodontology 2000, 50, 127–153.

    Article  Google Scholar 

  133. Shimabukuro, Y., Terashima, H., Takedachi, M., Maeda, K., Nakamura, T., Sawada, K., et al. (2011). Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. Journal of Cellular Physiology, 226, 809–821.

    Article  Google Scholar 

  134. Murakami, S. (2011). Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy. Periodontology 2000, 56, 188–208.

    Article  Google Scholar 

  135. Nishino, Y., Ebisawa, K., Yamada, Y., Okabe, K., Kamei, Y., & Ueda, M. (2011). Human deciduous teeth dental pulp cells with basic fibroblast growth factor enhance wound healing of skin defect. The Journal of Craniofacial Surgery, 22, 438–442.

    Article  Google Scholar 

  136. Lieberman, J. R., Daluiski, A., & Einhorn, T. A. (2002). The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am, 84-A, 1032–1044.

    Google Scholar 

  137. Janssens, K., Ten Dijke, P., Janssens, S., & Van Hul, W. (2005). Transforming growth factor-β1 to the bone. Endocrine Reviews, 26, 743–774.

    Article  Google Scholar 

  138. Bostrom, M. P. (1998). Expression of bone morphogenetic proteins in fracture healing. Clin. Orthopead. Rel. Res., 355, S116–S123.

    Article  Google Scholar 

  139. Worapamorn, W., Haase, H. R., Li, H., & Bartold, P. M. (2001). Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. Journal of Cellular Physiology, 186, 448–456.

    Article  Google Scholar 

  140. Fujii, S., Maeda, H., Tomokiyo, A., Monnouchi, S., Hori, K., Wada, N., & Akamine, A. (2010). Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell and Tissue Research, 342, 233–242.

    Article  Google Scholar 

  141. Fujita, T., Shiba, H., & Van Dyke, T. E. (2004). Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells. Cell Biology International, 28, 281–286.

    Article  Google Scholar 

  142. Takeuchi, H., Kubota, S., Murakashi, E., et al. (2009). Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and periodontal ligament cells. Journal of Periodontal Research, 44, 161–169.

    Article  Google Scholar 

  143. Nishimura, F., & Terranova, V. P. (1996). Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. Journal of Dental Research, 75(4), 986–992.

    Article  Google Scholar 

  144. Hammarstrӧm, L. (1997). Enamel matrix, cementum development and regeneration. Journal of Clinical Periodontology, 24, 658–668.

    Article  Google Scholar 

  145. Grover, V., Malhotra, R., Kapoor, A., Verma, N., & Sahota, J. K. (2010). Future of periodontal regeneration. Journal of Oral Health Community Dentistry, 4, 38–47.

    Google Scholar 

  146. Griffith, L. G., & Naughton, G. (2002). Tissue engineering-current challenges and expanding opportunities. Science, 295, 1009.

    Article  Google Scholar 

  147. Yaszemski, M. J., Oldham, J. B., Lu, L., & Currier, B. L. (2000). In J. E. Davies (Ed.), Bone engineering (p. 541). Toronto: em2 Inc..

    Google Scholar 

  148. Patil, A. S., Merchant, Y., & Nagarajan, P. (2013). Tissue engineering of craniofacial tissues – A review. Journal of Regenerative Medicine & Tissue Engineering. 2, 1–6.

    Google Scholar 

  149. Horst, O. V., Chavez, M. G., Jheon, A. H., Desai, T., & Klein, O. D. (2012). Stem cell and biomaterials research in dental tissue engineering and regeneration. Dental Clinics of North America, 56, 495–520.

    Article  Google Scholar 

  150. Tripathi, G., & Basu, B. (2012). A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International, 38(1), 341–349.

    Article  Google Scholar 

  151. Shalini, M., & Gajendran, P. (2017). The role of scaffolds in periodontal regeneration. International Journal of Pharmaceutical Sciences Review and Research, 45(1), 135–140.

    Google Scholar 

  152. Mooney, D. J., Powell, C., Piana, J., & Rutherford, B. (1996). Engineering dental pulp-like tissue in vitro. Biotechnology Progress, 12, 865–868.

    Article  Google Scholar 

  153. Kim, B. S., & Mooney, D. J. (1998). Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 16, 224–230.

    Article  Google Scholar 

  154. Freed, L. E., Vunjak-Novakovic, G., Biron, R. J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K., & Langer, R. (1994). Biodegradable polymer scaffolds for tissue engineering. Biotechnology, 12, 689–693.

    Google Scholar 

  155. Thomson, R. C., Yaszemski, M. J., Powers, J. M., & Mikos, A. G. (1995). Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. Journal of Biomaterials Science. Polymer Edition, 7, 23–38.

    Article  Google Scholar 

  156. Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21, 2405–2412.

    Article  Google Scholar 

  157. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., & Tan, K. C. (2001). Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research, 55, 203–216.

    Article  Google Scholar 

  158. Ma, P. X., & Choi, J. W. (2001). Biodegradable polymer scaffolds with well defined interconnected spherical pore network. Tissue Engineering, 7, 23–33.

    Article  Google Scholar 

  159. Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55, 141–150.

    Article  Google Scholar 

  160. Dormer, K. J., & Gan, R. Z. (2001). Biomaterials for implantable middle ear hearing devices. Otolaryngologic Clinics of North America, 34, 289–297.

    Article  Google Scholar 

  161. Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Accounts of Chemical Research, 33, 94–101.

    Article  Google Scholar 

  162. Burg, K. J., Porter, S., & Kellam, J. F. (2000). Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347–2359.

    Article  Google Scholar 

  163. Nehrer, S., Breinan, H. A., Ramappa, A., Young, G., Shortkroff, S., Louie, L. K., Sledge, C. B., Yannas, I. V., & Spector, M. (1997). Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 18, 769.

    Article  Google Scholar 

  164. Suh, J. K., & Matthew, H. W. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 21, 2589–2598.

    Article  Google Scholar 

  165. Van Osch, G. J., Van Der Veen, S. W., Burger, E. H., & Verwoerd-Verhoef, H. L. (2000). Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Engineering, 6, 321–330.

    Article  Google Scholar 

  166. Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20, 45–53.

    Article  Google Scholar 

  167. Singhal, A. R., Agrawal, C. M., & Athanasiou, K. A. (1996). Salient degradation features of a 50:50 PLA/PGA scaffold for tissue engineering. Tissue Engineering, 2, 197–207.

    Article  Google Scholar 

  168. Lye, K. W., Tideman, H., Wolke, J. C., Merkx, M. A., Chin, F. K., & Jansen, J. A. (2013). Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clinical Oral Implants Research, 24, 100–109.

    Article  Google Scholar 

  169. Punet, X., Mauchauffé, R., Rodríguez Cabello, J. C., Alonso, M., Engel, E., & Mateos-Timoneda, M. A. (2015). Biomolecular functionalization for enhanced cell–material interactions of poly(methyl methacrylate) surface. Regenerative Biomaterials, 2, 167–175.

    Article  Google Scholar 

  170. Chen, F. M., Zhao, Y. M., Wu, H., Deng, Z. H., Wang, Q. T., Zhou, W., Liu, Q., Dong, G. Y., Li, K., Wu, Z. F., & Jin, Y. (2006). Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. Journal of Controlled Release, 114, 209.

    Article  Google Scholar 

  171. Chen, F. M., Zhao, Y. M., Zhang, R., Jin, T., Sun, H. H., Wu, Z. F., & Jin, Y. (2007). Periodontal regeneration using novel glycidyl methacrylate dextran (Dex-GMA)=gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. Journal of Controlled Release, 121, 81.

    Article  Google Scholar 

  172. Ahmed, T. A., Dare, E. V., & Hincke, M. (2008). Fibrin: A versatile scaffold for tissue engineering applications. Tissue Engineering. Part B, Reviews, 14, 199.

    Article  Google Scholar 

  173. Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., & Cho, C. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26, 1–21.

    Article  Google Scholar 

  174. Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G., & Varaldo, P. E. (1990). Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial Agents and Chemotherapy, 34, 2019–2023.

    Article  Google Scholar 

  175. No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65–72.

    Article  Google Scholar 

  176. Bertram, U., & Bodmeier, R. (2006). In situ gelling, bioadhesive nasal inserts for extended drug delivery: In vitro characterization of a new nasal dosage form. European Journal of Pharmaceutical Sciences, 27, 62–71.

    Article  Google Scholar 

  177. Muzzarelli, R., Baldassarre, V., Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., & Vasi, V. (1988). Biological activity of chitosan: Ultrastructural study. Biomaterials, 9, 247–252.

    Article  Google Scholar 

  178. Costa-Pinto, A. R., Correlo, V. M., Sol, P. C., Bhattacharya, M., Charbord, P., Delorme, B., Reis, R. L., & Neves, N. M. (2009). Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules, 10, 2067–2073.

    Article  Google Scholar 

  179. Seol, Y. J., Lee, J. Y., Park, Y. J., Lee, Y. M., Young, K., Rhyu, I. C., Lee, S. J., Han, S. B., & Chung, C. P. (2004). Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnology Letters, 26, 1037–1041.

    Article  Google Scholar 

  180. Maruyama, M., & Ito, M. (1996). In vitro properties of a chitosan-bonded self hardening paste with hydroxyapatite granules. Journal of Biomedical Materials Research, 32, 527–532.

    Article  Google Scholar 

  181. Jameela, S. R., Misra, A., & Jayakrishnan, A. (1994). Cross-linked chitosan microspheres as carriers for prolonged delivery of macromolecular drugs. Journal of Biomaterials Science. Polymer Edition, 6, 621–632.

    Article  Google Scholar 

  182. Costa-Pinto, A. R., Salgado, A. J., Correlo, V. M., Sol, P., Bhattacharya, M., Charbord, P., Reis, R. L., & Neves, N. M. (2008). Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Tissue Engineering. Part A, 14, 1049–1057.

    Article  Google Scholar 

  183. Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15, 378–386.

    Article  Google Scholar 

  184. Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., & Barbarisi, A. (2005). Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 203, 465–470.

    Article  Google Scholar 

  185. Vasita, R., & Katti, D. S. (2006). Growth factor-delivery systems for tissue engineering: A materials perspective. Expert Review of Medical Devices, 3, 29.

    Article  Google Scholar 

  186. Barboza, E. P., Duarte, M. E., Geola, S. L., Sorensen, R. G., Riedel, G. E., & Wikesjo, U. M. (2000). Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. Journal of Periodontology, 71, 488.

    Article  Google Scholar 

  187. Cen, L., Liu, W., Cui, L., Zhang, W., & Cao, Y. (2008). Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research, 63, 492.

    Article  Google Scholar 

  188. Galler, K. M., C, A., Cavender, U., Koeklue, et al. (2011). Bioengineering of dental stem cells in a PEGylated fibrin gel. Regenerative Medicine, 6, 191–200.

    Article  Google Scholar 

  189. Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337.

    Article  Google Scholar 

  190. Hall, H. (2007). Modified fibrin hydrogel matrices: Both, 3D scaffolds and local and controlled release systems to stimulate angiogenesis. Current Pharmaceutical Design, 13, 3597.

    Article  Google Scholar 

  191. Buxton, P. G., & Cobourne, M. T. (2007). Regenerative approaches in the craniofacial region: Manipulating cellular progenitors for oro-facial repair. Oral Diseases, 13, 452.

    Article  Google Scholar 

  192. Smidsrod, O., & Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78.

    Article  Google Scholar 

  193. Drury, J. L., Dennis, R. G., & Mooney, D. J. (2004). The tensile properties of alginate hydrogels. Biomaterials, 25, 3187–3199.

    Article  Google Scholar 

  194. Yuan, Z., Nie, H., Wang, S., et al. (2011). Biomaterial selection for tooth regeneration. Tissue Engineering. Part B, Reviews, 17, 373–388.

    Article  Google Scholar 

  195. Matsuura, K., Utoh, R., Nagase, K., & Okano, T. (2014). Cell sheet approach for tissue engineering and regenerative medicine. Journal of Controlled Release, 190, 228–239.

    Article  Google Scholar 

  196. Yang, J., Yamato, M., Shimizu, T., Sekine, H., Ohashi, K., Kanzaki, M., Ohki, T., Nishida, K., & Okano, T. (2007). Reconstruction of functional tissues with cell sheet engineering. Biomaterials, 28, 5033–5043.

    Article  Google Scholar 

  197. Zhang, H., Liu, S., Zhu, B., Xu, Q., Ding, Y., & Jin, Y. (2016). Composite cell sheet for periodontal regeneration: Crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research & Therapy, 7(168), 1–15.

    Google Scholar 

  198. Tsumanuma, Y., Iwata, T., Washio, K., Yoshida, T., Yamada, A., Takagi, R., Ohno, T., Lin, K., Yamato, M., Ishikawa, I., Okano, T., & Izumi, Y. (2011). Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, 32, 5819–5825.

    Article  Google Scholar 

  199. Sawa, Y., & Miyagawa, S. (2013). Present and future perspectives on cell sheet-based myocardial regeneration therapy. BioMed Research International, 2013, 583912.

    Article  Google Scholar 

  200. Zavala, J., Jaime, G. R. L., Barrientos, C. A. R., & Valdez-Garcia, J. (2013). Corneal endothelium: Developmental strategies for regeneration. Eye (London, England), 27, 579–588.

    Article  Google Scholar 

  201. Wang, J., Zhang, R., Shen, Y., Xu, C., Qi, S., Lu, L., Wang, R., & Xu, Y. (2014). Recent advances in cell sheet technology for periodontal regeneration. Current Stem Cell Research & Therapy, 9, 162–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iranparvar, A., Nozariasbmarz, A., DeGrave, S., Tayebi, L. (2020). Tissue Engineering in Periodontal Regeneration. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics