Skip to main content

Risk Factors of Hepatocellular Carcinoma for Precision Personalized Care

  • Chapter
  • First Online:
Hepatocellular Carcinoma

Abstract

Chronic fibrotic liver disease caused by viral or metabolic etiologies is a high-risk condition for developing hepatocellular carcinoma (HCC). Even after complete HCC tumor resection or ablation, the carcinogenic tissue microenvironment in the remnant liver can give rise to recurrent de novo HCC tumors, which progress into incurable, advanced-stage disease in most patients. Thus, early detection and prevention of HCC development will be the most impactful strategy to improve the dismal HCC prognosis. However, practice-guideline-recommended “one-size-fits-all” HCC screening (or interchangeably, “surveillance”) for early tumor detection is utilized in less than 20% of the target population, and performance of screening modalities is suboptimal. Furthermore, optimal screening strategies for emerging at-risk patient populations such as chronic hepatitis C after viral cure and noncirrhotic nonalcoholic fatty liver disease are yet to be established. Clinical and molecular HCC risk prediction will enable precise HCC risk estimation followed by tailored HCC screening for individual patients to maximize its cost-effectiveness and optimize allocation of limited resources for the screening. Biomarker development can be facilitated by utilizing unified framework (e.g., PRoBE design) and resources (e.g., Early Detection Research Network and Texas Hepatocellular Carcinoma Consortium biorepositories).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, et al. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67(2):302–9. https://doi.org/10.1016/j.jhep.2017.03.011.

    Article  PubMed  Google Scholar 

  3. Yang JD, Mohamed EA, Aziz AO, Shousha HI, Hashem MB, Nabeel MM, et al. Characteristics, management, and outcomes of patients with hepatocellular carcinoma in Africa: a multicountry observational study from the Africa Liver Cancer Consortium. Lancet Gastroenterol Hepatol. 2017;2(2):103–11. https://doi.org/10.1016/S2468-1253(16)30161-3.

    Article  PubMed  Google Scholar 

  4. Mortality GBD. Causes of Death C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71. https://doi.org/10.1016/S0140-6736(14)61682-2.

    Article  Google Scholar 

  5. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42. https://doi.org/10.1016/j.addr.2017.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mokdad AH, Dwyer-Lindgren L, Fitzmaurice C, Stubbs RW, Bertozzi-Villa A, Morozoff C, et al. Trends and Patterns of Disparities in Cancer Mortality Among US Counties, 1980-2014. JAMA. 2017;317(4):388–406. https://doi.org/10.1001/jama.2016.20324.

    Article  PubMed  PubMed Central  Google Scholar 

  7. White DL, Thrift AP, Kanwal F, Davila J, El-Serag HB. Incidence of hepatocellular carcinoma in all 50 United States, from 2000 through 2012. Gastroenterology. 2017;152(4):812–20 e5. https://doi.org/10.1053/j.gastro.2016.11.020.

    Article  PubMed  Google Scholar 

  8. Ryerson AB, Eheman CR, Altekruse SF, Ward JW, Jemal A, Sherman RL, et al. Annual report to the Nation on the status of cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer. 2016;122(9):1312–37. https://doi.org/10.1002/cncr.29936.

    Article  PubMed  Google Scholar 

  9. Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol. 2016;34(15):1787–94. https://doi.org/10.1200/JCO.2015.64.7412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakagawa S, Wei L, Song WM, Higashi T, Ghoshal S, Kim RS, et al. Molecular liver cancer prevention in cirrhosis by organ transcriptome analysis and lysophosphatidic acid pathway inhibition. Cancer Cell. 2016;30(6):879–90. https://doi.org/10.1016/j.ccell.2016.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parikh ND, Singal AG, Hutton DW. Cost effectiveness of regorafenib as second-line therapy for patients with advanced hepatocellular carcinoma. Cancer. 2017;123(19):3725–31. https://doi.org/10.1002/cncr.30863.

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network. Electronic address wbe, Cancer Genome Atlas Research N. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 e23. https://doi.org/10.1016/j.cell.2017.05.046.

    Article  CAS  Google Scholar 

  13. Goossens N, Sun X, Hoshida Y. Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol. 2015;2(4):371–9. https://doi.org/10.2217/hep.15.26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoshida Y, Fuchs BC, Tanabe KK. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges. Curr Cancer Drug Targets. 2012;12(9):1129–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the study of liver diseases. Hepatology. 2018;68(2):723–50. https://doi.org/10.1002/hep.29913.

    Article  PubMed  Google Scholar 

  16. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–80. https://doi.org/10.1002/hep.29086.

    Article  PubMed  Google Scholar 

  17. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014;11(4):e1001624. https://doi.org/10.1371/journal.pmed.1001624.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mittal S, Kanwal F, Ying J, Chung R, Sada YH, Temple S, et al. Effectiveness of surveillance for hepatocellular carcinoma in clinical practice: a United States cohort. J Hepatol. 2016;65(6):1148–54. https://doi.org/10.1016/j.jhep.2016.07.025.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singal AG, Mittal S, Yerokun OA, Ahn C, Marrero JA, Yopp AC, et al. Hepatocellular carcinoma screening associated with early tumor detection and improved survival among patients with cirrhosis in the US. Am J Med. 2017. https://doi.org/10.1016/j.amjmed.2017.01.021.

  20. Cadier B, Bulsei J, Nahon P, Seror O, Laurent A, Rosa I, et al. Early detection and curative treatment of hepatocellular carcinoma: a cost-effectiveness analysis in France and in the United States. Hepatology. 2017;65(4):1237–48. https://doi.org/10.1002/hep.28961.

    Article  PubMed  Google Scholar 

  21. Mourad A, Deuffic-Burban S, Ganne-Carrie N, Renaut-Vantroys T, Rosa I, Bouvier AM, et al. Hepatocellular carcinoma screening in patients with compensated hepatitis C virus (HCV)-related cirrhosis aware of their HCV status improves survival: a modeling approach. Hepatology. 2014;59(4):1471–81. https://doi.org/10.1002/hep.26944.

    Article  PubMed  Google Scholar 

  22. Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13(12):2140–51. https://doi.org/10.1016/j.cgh.2015.08.014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Singal AG, Tiro JA, Marrero JA, McCallister K, Mejias C, Adamson B, et al. Mailed outreach program increases ultrasound screening of patients with cirrhosis for hepatocellular carcinoma. Gastroenterology. 2017;152(3):608–15 e4. https://doi.org/10.1053/j.gastro.2016.10.042.

    Article  PubMed  Google Scholar 

  24. Goossens N, Bian CB, Hoshida Y. Tailored algorithms for hepatocellular carcinoma surveillance: is one-size-fits-all strategy outdated? Curr Hepatol Rep. 2017;16(1):64–71. https://doi.org/10.1007/s11901-017-0336-z.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Atiq O, Tiro J, Yopp AC, Muffler A, Marrero JA, Parikh ND, et al. An assessment of benefits and harms of hepatocellular carcinoma surveillance in patients with cirrhosis. Hepatology. 2017;65(4):1196–205. https://doi.org/10.1002/hep.28895.

    Article  CAS  PubMed  Google Scholar 

  26. Germani G, Hytiroglou P, Fotiadu A, Burroughs AK, Dhillon AP. Assessment of fibrosis and cirrhosis in liver biopsies: an update. Semin Liver Dis. 2011;31(1):82–90. https://doi.org/10.1055/s-0031-1272836.

    Article  PubMed  Google Scholar 

  27. Tsochatzis E, Bruno S, Isgro G, Hall A, Theocharidou E, Manousou P, et al. Collagen proportionate area is superior to other histological methods for sub-classifying cirrhosis and determining prognosis. J Hepatol. 2014;60(5):948–54. https://doi.org/10.1016/j.jhep.2013.12.023.

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, de Boer WB, Adams LA, MacQuillan G, Bulsara MK, Jeffrey GP. Image analysis of liver biopsy samples measures fibrosis and predicts clinical outcome. J Hepatol. 2014;61(1):22–7. https://doi.org/10.1016/j.jhep.2014.02.031.

    Article  PubMed  Google Scholar 

  29. Wang TH, Chen TC, Teng X, Liang KH, Yeh CT. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy. Sci Rep. 2015;5:12962. https://doi.org/10.1038/srep12962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suk KT, Kim EJ, Kim DJ, Kim HS, Bang CS, Park TY, et al. Prognostic significance of hemodynamic and clinical stages in the prediction of hepatocellular carcinoma. J Clin Gastroenterol. 2017;51(3):285–93. https://doi.org/10.1097/MCG.0000000000000671.

    Article  PubMed  Google Scholar 

  31. Motosugi U, Ichikawa T, Koshiishi T, Sano K, Morisaka H, Ichikawa S, et al. Liver stiffness measured by magnetic resonance elastography as a risk factor for hepatocellular carcinoma: a preliminary case-control study. Eur Radiol. 2013;23(1):156–62. https://doi.org/10.1007/s00330-012-2571-6.

    Article  PubMed  Google Scholar 

  32. Singh S, Fujii LL, Murad MH, Wang Z, Asrani SK, Ehman RL, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11(12):1573–84 e1-2.; quiz e88-9. https://doi.org/10.1016/j.cgh.2013.07.034.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shin SH, Kim SU, Park JY, Kim DY, Ahn SH, Han KH, et al. Liver stiffness-based model for prediction of hepatocellular carcinoma in chronic hepatitis B virus infection: comparison with histological fibrosis. Liver Int. 2015;35(3):1054–62. https://doi.org/10.1111/liv.12621.

    Article  CAS  PubMed  Google Scholar 

  34. Wang JH, Yen YH, Yao CC, Hung CH, Chen CH, Hu TH, et al. Liver stiffness-based score in hepatoma risk assessment for chronic hepatitis C patients after successful antiviral therapy. Liver Int. 2016;36(12):1793–9. https://doi.org/10.1111/liv.13179.

    Article  CAS  PubMed  Google Scholar 

  35. Lee YC, Cohet C, Yang YC, Stayner L, Hashibe M, Straif K. Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer. Int J Epidemiol. 2009;38(6):1497–511. https://doi.org/10.1093/ije/dyp280.

    Article  PubMed  Google Scholar 

  36. Makarova-Rusher OV, Altekruse SF, McNeel TS, Ulahannan S, Duffy AG, Graubard BI, et al. Population attributable fractions of risk factors for hepatocellular carcinoma in the United States. Cancer. 2016;122(11):1757–65. https://doi.org/10.1002/cncr.29971.

    Article  PubMed  Google Scholar 

  37. Niu J, Lin Y, Guo Z, Niu M, Su C. The epidemiological investigation on the risk factors of hepatocellular carcinoma: a case-control study in Southeast China. Medicine. 2016;95(6):e2758. https://doi.org/10.1097/MD.0000000000002758.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu MW, Lin CL, Liu CJ, Yang SH, Tseng YL, Wu CF. Influence of metabolic risk factors on risk of hepatocellular carcinoma and liver-related death in men with chronic hepatitis B: a large cohort study. Gastroenterology. 2017. https://doi.org/10.1053/j.gastro.2017.07.001.

  39. Zhong JH, You XM, Gong WF, Ma L, Zhang Y, Mo QG, et al. Epidermal growth factor gene polymorphism and risk of hepatocellular carcinoma: a meta-analysis. PLoS One. 2012;7(3):e32159. https://doi.org/10.1371/journal.pone.0032159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nahon P, Sutton A, Rufat P, Charnaux N, Mansouri A, Moreau R, et al. A variant in myeloperoxidase promoter hastens the emergence of hepatocellular carcinoma in patients with HCV-related cirrhosis. J Hepatol. 2012;56(2):426–32. https://doi.org/10.1016/j.jhep.2011.08.010.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Zhai Y, Hu Z, Wu C, Qian J, Jia W, et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet. 2010;42(9):755–8. https://doi.org/10.1038/ng.638.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang DK, Sun J, Cao G, Liu Y, Lin D, Gao YZ, et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet. 2013;45(1):72–5. https://doi.org/10.1038/ng.2483.

    Article  CAS  PubMed  Google Scholar 

  43. Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43(5):455–8. https://doi.org/10.1038/ng.809.

    Article  CAS  PubMed  Google Scholar 

  44. Miki D, Ochi H, Hayes CN, Abe H, Yoshima T, Aikata H, et al. Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet. 2011;43(8):797–800. https://doi.org/10.1038/ng.876.

    Article  CAS  PubMed  Google Scholar 

  45. Huang CF, Huang CI, Yeh ML, Wang SC, Chen KY, Ko YM, et al. Diversity of the association of serum levels and genetic variants of MHC class I polypeptide-related chain A with liver fibrosis in chronic hepatitis C. Oncotarget. 2017;8(20):32618–25. https://doi.org/10.18632/oncotarget.15941.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang S, Qiao K, Trieu C, Huo Z, Dai Q, Du Y, et al. Genetic polymorphism of epidermal growth factor rs4444903 influences susceptibility to HCV-related liver cirrhosis and hepatocellular carcinoma in a Chinese han population. Clin Lab. 2017;63(4):845–50. https://doi.org/10.7754/Clin.Lab.2016.161203.

    Article  CAS  PubMed  Google Scholar 

  47. Trepo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016;65(2):399–412. https://doi.org/10.1016/j.jhep.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  48. Donati B, Pietrelli A, Pingitore P, Dongiovanni P, Caddeo A, Walker L, et al. Telomerase reverse transcriptase germline mutations and hepatocellular carcinoma in patients with nonalcoholic fatty liver disease. Cancer Med. 2017;6(8):1930–40. https://doi.org/10.1002/cam4.1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donati B, Dongiovanni P, Romeo S, Meroni M, McCain M, Miele L, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep. 2017;7(1):4492. https://doi.org/10.1038/s41598-017-04991-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsuura K, Sawai H, Ikeo K, Ogawa S, Iio E, Isogawa M, et al. Genome-wide association study identifies TLL1 variant associated with development of hepatocellular carcinoma after eradication of hepatitis C virus infection. Gastroenterology. 2017;152(6):1383–94. https://doi.org/10.1053/j.gastro.2017.01.041.

    Article  CAS  PubMed  Google Scholar 

  51. Besheer T, El-Bendary M, Elalfy H, Abd El-Maksoud M, Salah M, Zalata K, et al. Prediction of fibrosis progression rate in patients with chronic hepatitis C genotype 4: role of cirrhosis risk score and host factors. J Interf Cytokine Res. 2017;37(3):97–102. https://doi.org/10.1089/jir.2016.0111.

    Article  CAS  Google Scholar 

  52. Duarte-Salles T, Misra S, Stepien M, Plymoth A, Muller D, Overvad K, et al. Circulating osteopontin and prediction of hepatocellular carcinoma development in a large European population. Cancer Prev Res (Phila). 2016;9(9):758–65. https://doi.org/10.1158/1940-6207.CAPR-15-0434.

    Article  CAS  Google Scholar 

  53. Mazziotti G, Sorvillo F, Morisco F, Carbone A, Rotondi M, Stornaiuolo G, et al. Serum insulin-like growth factor I evaluation as a useful tool for predicting the risk of developing hepatocellular carcinoma in patients with hepatitis C virus-related cirrhosis: a prospective study. Cancer. 2002;95(12):2539–45. https://doi.org/10.1002/cncr.11002.

    Article  CAS  PubMed  Google Scholar 

  54. Verhelst X, Vanderschaeghe D, Castera L, Raes T, Geerts A, Francoz C, et al. A glycomics-based test predicts the development of hepatocellular carcinoma in cirrhosis. Clin Cancer Res. 2017;23(11):2750–8. https://doi.org/10.1158/1078-0432.CCR-16-1500.

    Article  CAS  PubMed  Google Scholar 

  55. Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst. 2008;100(20):1432–8. https://doi.org/10.1093/jnci/djn326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69. https://doi.org/10.3978/j.issn.2218-676X.2015.06.04.

    Article  CAS  PubMed  Google Scholar 

  57. Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA, et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther. 2009;30(1):37–47. https://doi.org/10.1111/j.1365-2036.2009.04014.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Singal AG, Conjeevaram HS, Volk ML, Fu S, Fontana RJ, Askari F, et al. Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol Biomark Prev. 2012;21(5):793–9. https://doi.org/10.1158/1055-9965.EPI-11-1005.

    Article  Google Scholar 

  59. Del Poggio P, Olmi S, Ciccarese F, Di Marco M, Rapaccini GL, Benvegnu L, et al. Factors that affect efficacy of ultrasound surveillance for early stage hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(11):1927–33 e2. https://doi.org/10.1016/j.cgh.2014.02.025.

    Article  PubMed  Google Scholar 

  60. Simmons O, Fetzer DT, Yokoo T, Marrero JA, Yopp A, Kono Y, et al. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients with cirrhosis. Aliment Pharmacol Ther. 2017;45(1):169–77. https://doi.org/10.1111/apt.13841.

    Article  CAS  PubMed  Google Scholar 

  61. Song PP, Xia JF, Inagaki Y, Hasegawa K, Sakamoto Y, Kokudo N, et al. Controversies regarding and perspectives on clinical utility of biomarkers in hepatocellular carcinoma. World J Gastroenterol. 2016;22(1):262–74. https://doi.org/10.3748/wjg.v22.i1.262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang M, Devarajan K, Singal AG, Marrero JA, Dai J, Feng Z, et al. The doylestown algorithm: a test to improve the performance of AFP in the detection of hepatocellular carcinoma. Cancer Prev Res (Phila). 2016;9(2):172–9. https://doi.org/10.1158/1940-6207.CAPR-15-0186.

    Article  CAS  Google Scholar 

  63. Johnson PJ, Pirrie SJ, Cox TF, Berhane S, Teng M, Palmer D, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomark Prev. 2014;23(1):144–53. https://doi.org/10.1158/1055-9965.EPI-13-0870.

    Article  CAS  Google Scholar 

  64. Yang JD, Dai J, Singal AG, Gopal P, Addissie BD, Nguyen MH, et al. Improved performance of serum alpha-fetoprotein for hepatocellular carcinoma diagnosis in HCV cirrhosis with normal alanine transaminase. Cancer Epidemiol Biomark Prev. 2017;26(7):1085–92. https://doi.org/10.1158/1055-9965.EPI-16-0747.

    Article  CAS  Google Scholar 

  65. Wang M, Sanda M, Comunale MA, Herrera H, Swindell C, Kono Y, et al. Changes in the glycosylation of kininogen and the development of a kininogen-based algorithm for the early detection of HCC. Cancer Epidemiol Biomark Prev. 2017;26(5):795–803. https://doi.org/10.1158/1055-9965.EPI-16-0974.

    Article  CAS  Google Scholar 

  66. Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155–61. https://doi.org/10.1038/nmat4997.

    Article  CAS  PubMed  Google Scholar 

  67. Kisiel JB, Dukek BA, Kanipakam R, Ghoz HM, Yab TC, Berger CK, et al. hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation. Hepatology. 2018. https://doi.org/10.1002/hep.30244.

  68. Yu NC, Chaudhari V, Raman SS, Lassman C, Tong MJ, Busuttil RW, et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin Gastroenterol Hepatol. 2011;9(2):161–7. https://doi.org/10.1016/j.cgh.2010.09.017.

    Article  CAS  PubMed  Google Scholar 

  69. Pocha C, Dieperink E, McMaken KA, Knott A, Thuras P, Ho SB. Surveillance for hepatocellular cancer with ultrasonography vs. computed tomography -- a randomised study. Aliment Pharmacol Ther. 2013;38(3):303–12. https://doi.org/10.1111/apt.12370.

    Article  CAS  PubMed  Google Scholar 

  70. Kim SY, An J, Lim Y-S, Han S, Lee J-Y, Byun JH, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA oncology. 2016.

    Google Scholar 

  71. Besa C, Lewis S, Pandharipande PV, Chhatwal J, Kamath A, Cooper N, et al. Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol. 2016:1–12.

    Google Scholar 

  72. Borges KA, Dai J, Parikh ND, Schwartz M, Nguyen MH, Roberts LR, et al. Rationale and design of the Hepatocellular carcinoma early detection strategy study: a multi-center longitudinal initiative of the National Cancer Institute’s early detection research network. Contemp Clin Trials. 2019;76:49–54. https://doi.org/10.1016/j.cct.2018.11.008.

    Article  PubMed  Google Scholar 

  73. Feng Z, Marrero JA, Khaderi S, Singal AG, Kanwal F, Loo N, et al. Design of the texas hepatocellular carcinoma consortium cohort study. Am J Gastroenterol. 2019. https://doi.org/10.14309/ajg.0000000000000068.

  74. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93(14):1054–61.

    Article  CAS  PubMed  Google Scholar 

  75. Goossens N, Singal AG, King LY, Andersson KL, Fuchs BC, Besa C, et al. Cost-effectiveness of risk score-stratified hepatocellular carcinoma screening in patients with cirrhosis. Clin Transl Gastroenterol. 2017;8(6):e101. https://doi.org/10.1038/ctg.2017.26.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Furlan A, Marin D, Agnello F, Di Martino M, Di Marco V, Lagalla R, et al. Hepatocellular carcinoma presenting at contrast-enhanced multi–detector-row computed tomography or gadolinium-enhanced magnetic resonance imaging as a small (≤ 2 cm), indeterminate nodule: growth rate and optimal interval time for imaging follow-up. J Comput Assist Tomogr. 2012;36(1):20–5.

    Article  PubMed  Google Scholar 

  77. Taouli B, Goh JS, Lu Y, Qayyum A, Yeh BM, Merriman RB, et al. Growth rate of hepatocellular carcinoma: evaluation with serial computed tomography or magnetic resonance imaging. J Comput Assist Tomogr. 2005;29(4):425–9.

    Article  PubMed  Google Scholar 

  78. Santi V, Trevisani F, Gramenzi A, Grignaschi A, Mirici-Cappa F, Del Poggio P, et al. Semiannual surveillance is superior to annual surveillance for the detection of early hepatocellular carcinoma and patient survival. J Hepatol. 2010;53(2):291–7.

    Article  PubMed  Google Scholar 

  79. Trinchet JC, Chaffaut C, Bourcier V, Degos F, Henrion J, Fontaine H, et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. Hepatology. 2011;54(6):1987–97. https://doi.org/10.1002/hep.24545.

    Article  PubMed  Google Scholar 

  80. Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58(3):130–60.

    Article  PubMed  Google Scholar 

  81. Tice JA, Cummings SR, Smith-Bindman R, Ichikawa L, Barlow WE, Kerlikowske K. Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model. Ann Intern Med. 2008;148(5):337–47.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bolutayo K, van Manh AL, Cohen N, Ndiaye D, Jandorf L, Perumalswami PV. Reducing liver cancer risk in African-born immigrants through culturally targeted hepatitis B group education programs. J Cancer Educ. 2017. https://doi.org/10.1007/s13187-017-1231-6.

  83. Yang HI, Yuen MF, Chan HL, Han KH, Chen PJ, Kim DY, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol. 2011;12(6):568–74. https://doi.org/10.1016/S1470-2045(11)70077-8.

    Article  PubMed  Google Scholar 

  84. Wong VW, Chan SL, Mo F, Chan TC, Loong HH, Wong GL, et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers. J Clin Oncol. 2010;28(10):1660–5. https://doi.org/10.1200/JCO.2009.26.2675.

    Article  CAS  PubMed  Google Scholar 

  85. Wong GL, Chan HL, Wong CK, Leung C, Chan CY, Ho PP, et al. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J Hepatol. 2014;60(2):339–45. https://doi.org/10.1016/j.jhep.2013.09.029.

    Article  PubMed  Google Scholar 

  86. Yang HI, Sherman M, Su J, Chen PJ, Liaw YF, Iloeje UH, et al. Nomograms for risk of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. J Clin Oncol. 2010;28(14):2437–44. https://doi.org/10.1200/JCO.2009.27.4456.

    Article  PubMed  Google Scholar 

  87. Fan C, Li M, Gan Y, Chen T, Sun Y, Lu J, et al. A simple AGED score for risk classification of primary liver cancer: development and validation with long-term prospective HBsAg-positive cohorts in Qidong, China. Gut. 2018. https://doi.org/10.1136/gutjnl-2018-316525.

  88. Hung YC, Lin CL, Liu CJ, Hung H, Lin SM, Lee SD, et al. Development of risk scoring system for stratifying population for hepatocellular carcinoma screening. Hepatology. 2015;61(6):1934–44. https://doi.org/10.1002/hep.27610.

    Article  CAS  PubMed  Google Scholar 

  89. Papatheodoridis G, Dalekos G, Sypsa V, Yurdaydin C, Buti M, Goulis J, et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J Hepatol. 2016;64(4):800–6. https://doi.org/10.1016/j.jhep.2015.11.035.

    Article  CAS  PubMed  Google Scholar 

  90. Kim JH, Kim YD, Lee M, Jun BG, Kim TS, Suk KT, et al. Modified PAGE-B score predicts the risk of hepatocellular carcinoma in Asians with chronic hepatitis B on antiviral therapy. J Hepatol. 2018;69(5):1066–73. https://doi.org/10.1016/j.jhep.2018.07.018.

    Article  PubMed  Google Scholar 

  91. Sohn W, Cho JY, Kim JH, Lee JI, Kim HJ, Woo MA, et al. Risk score model for the development of hepatocellular carcinoma in treatment-naive patients receiving oral antiviral treatment for chronic hepatitis B. Clin Mol Hepatol. 2017;23(2):170–8. https://doi.org/10.3350/cmh.2016.0086.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Suh B, Park S, Shin DW, Yun JM, Yang HK, Yu SJ, et al. High liver fibrosis index FIB-4 is highly predictive of hepatocellular carcinoma in chronic hepatitis B carriers. Hepatology. 2015;61(4):1261–8. https://doi.org/10.1002/hep.27654.

    Article  CAS  PubMed  Google Scholar 

  93. Yuen MF, Tanaka Y, Fong DY, Fung J, Wong DK, Yuen JC, et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol. 2009;50(1):80–8. https://doi.org/10.1016/j.jhep.2008.07.023.

    Article  PubMed  Google Scholar 

  94. Kim MN, Kim SU, Kim BK, Park JY, Kim DY, Ahn SH, et al. Increased risk of hepatocellular carcinoma in chronic hepatitis B patients with transient elastography-defined subclinical cirrhosis. Hepatology. 2015;61(6):1851–9. https://doi.org/10.1002/hep.27735.

    Article  PubMed  Google Scholar 

  95. Singal AG, Mukherjee A, Elmunzer BJ, Higgins PD, Lok AS, Zhu J, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Am J Gastroenterol. 2013;108(11):1723–30. https://doi.org/10.1038/ajg.2013.332.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cho JY, Paik YH, Park HC, Yu JI, Sohn W, Gwak GY, et al. The feasibility of combined transcatheter arterial chemoembolization and radiotherapy for advanced hepatocellular carcinoma. Liver Int. 2014;34(5):795–801. https://doi.org/10.1111/liv.12445.

    Article  CAS  PubMed  Google Scholar 

  97. Ganne-Carrie N, Layese R, Bourcier V, Cagnot C, Marcellin P, Guyader D, et al. Nomogram for individualized prediction of hepatocellular carcinoma occurrence in hepatitis C virus cirrhosis (ANRS CO12 CirVir). Hepatology. 2016;64(4):1136–47. https://doi.org/10.1002/hep.28702.

    Article  CAS  PubMed  Google Scholar 

  98. Nakagomi R, Tateishi R, Masuzaki R, Soroida Y, Iwai T, Kondo M, et al. Liver stiffness measurements in chronic hepatitis C: Treatment evaluation and risk assessment. J Gastroenterol Hepatol. 2018. https://doi.org/10.1111/jgh.14530.

  99. Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology. 2009;136(1):138–48. https://doi.org/10.1053/j.gastro.2008.09.014.

    Article  CAS  PubMed  Google Scholar 

  100. El-Serag HB, Kanwal F, Davila JA, Kramer J, Richardson P. A new laboratory-based algorithm to predict development of hepatocellular carcinoma in patients with hepatitis C and cirrhosis. Gastroenterology. 2014;146(5):1249–55 e1. https://doi.org/10.1053/j.gastro.2014.01.045.

    Article  CAS  PubMed  Google Scholar 

  101. Chang KC, Wu YY, Hung CH, Lu SN, Lee CM, Chiu KW, et al. Clinical-guide risk prediction of hepatocellular carcinoma development in chronic hepatitis C patients after interferon-based therapy. Br J Cancer. 2013;109(9):2481–8. https://doi.org/10.1038/bjc.2013.564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ikeda M, Fujiyama S, Tanaka M, Sata M, Ide T, Yatsuhashi H, et al. Risk factors for development of hepatocellular carcinoma in patients with chronic hepatitis C after sustained response to interferon. J Gastroenterol. 2005;40(2):148–56. https://doi.org/10.1007/s00535-004-1519-2.

    Article  CAS  PubMed  Google Scholar 

  103. Chang KC, Hung CH, Lu SN, Wang JH, Lee CM, Chen CH, et al. A novel predictive score for hepatocellular carcinoma development in patients with chronic hepatitis C after sustained response to pegylated interferon and ribavirin combination therapy. J Antimicrob Chemother. 2012;67(11):2766–72. https://doi.org/10.1093/jac/dks269.

    Article  CAS  PubMed  Google Scholar 

  104. Casadei Gardini A, Foschi FG, Conti F, Petracci E, Vukotic R, Marisi G, et al. Immune inflammation indicators and ALBI score to predict liver cancer in HCV-patients treated with direct-acting antivirals. Dig Liver Dis. 2018. https://doi.org/10.1016/j.dld.2018.09.016.

  105. Flemming JA, Yang JD, Vittinghoff E, Kim WR, Terrault NA. Risk prediction of hepatocellular carcinoma in patients with cirrhosis: the ADRESS-HCC risk model. Cancer. 2014;120(22):3485–93. https://doi.org/10.1002/cncr.28832.

    Article  PubMed  Google Scholar 

  106. Velazquez RF, Rodriguez M, Navascues CA, Linares A, Perez R, Sotorrios NG, et al. Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology. 2003;37(3):520–7. https://doi.org/10.1053/jhep.2003.50093.

    Article  PubMed  Google Scholar 

  107. Aoki T, Iijima H, Tada T, Kumada T, Nishimura T, Nakano C, et al. Prediction of development of hepatocellular carcinoma using a new scoring system involving virtual touch quantification in patients with chronic liver diseases. J Gastroenterol. 2017;52(1):104–12. https://doi.org/10.1007/s00535-016-1228-7.

    Article  PubMed  Google Scholar 

  108. Wen CP, Lin J, Yang YC, Tsai MK, Tsao CK, Etzel C, et al. Hepatocellular carcinoma risk prediction model for the general population: the predictive power of transaminases. J Natl Cancer Inst. 2012;104(20):1599–611. https://doi.org/10.1093/jnci/djs372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Konerman MA, Zhang Y, Zhu J, Higgins PD, Lok AS, Waljee AK. Improvement of predictive models of risk of disease progression in chronic hepatitis C by incorporating longitudinal data. Hepatology. 2015;61(6):1832–41. https://doi.org/10.1002/hep.27750.

    Article  PubMed  Google Scholar 

  110. Lens S, Torres F, Puigvehi M, Marino Z, Londono MC, Martinez SM, et al. Predicting the development of liver cirrhosis by simple modelling in patients with chronic hepatitis C. Aliment Pharmacol Ther. 2016;43(3):364–74. https://doi.org/10.1111/apt.13472.

    Article  CAS  PubMed  Google Scholar 

  111. Vilar-Gomez E, Calzadilla-Bertot L, Friedman SL, Gra-Oramas B, Gonzalez-Fabian L, Lazo-Del Vallin S, et al. Serum biomarkers can predict a change in liver fibrosis 1 year after lifestyle intervention for biopsy-proven NASH. Liver Int. 2017;37(12):1887–96. https://doi.org/10.1111/liv.13480.

    Article  CAS  PubMed  Google Scholar 

  112. Irvine KM, Wockner LF, Shanker M, Fagan KJ, Horsfall LU, Fletcher LM, et al. The Enhanced liver fibrosis score is associated with clinical outcomes and disease progression in patients with chronic liver disease. Liver Int. 2016;36(3):370–7. https://doi.org/10.1111/liv.12896.

    Article  PubMed  Google Scholar 

  113. Chen K, Shi W, Xin Z, Wang H, Zhu X, Wu X, et al. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci in a Chinese population. PLoS One. 2013;8(10):e77315. https://doi.org/10.1371/journal.pone.0077315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kozuka R, Enomoto M, Sato-Matsubara M, Yoshida K, Motoyama H, Hagihara A, et al. Association between HLA-DQA1/DRB1 polymorphism and development of hepatocellular carcinoma during entecavir treatment. J Gastroenterol Hepatol. 2018. https://doi.org/10.1111/jgh.14454.

  115. Tanabe KK, Lemoine A, Finkelstein DM, Kawasaki H, Fujii T, Chung RT, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA. 2008;299(1):53–60. https://doi.org/10.1001/jama.2007.65.

    Article  CAS  PubMed  Google Scholar 

  116. Abu Dayyeh BK, Yang M, Fuchs BC, Karl DL, Yamada S, Sninsky JJ, et al. A functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology. 2011;141(1):141–9. https://doi.org/10.1053/j.gastro.2011.03.045.

    Article  CAS  PubMed  Google Scholar 

  117. Jiang G, Yu K, Shao L, Yu X, Hu C, Qian P, et al. Association between epidermal growth factor gene +61A/G polymorphism and the risk of hepatocellular carcinoma: a meta-analysis based on 16 studies. BMC Cancer. 2015;15:314. https://doi.org/10.1186/s12885-015-1318-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Asahina Y, Tsuchiya K, Nishimura T, Muraoka M, Suzuki Y, Tamaki N, et al. Genetic variation near interleukin 28B and the risk of hepatocellular carcinoma in patients with chronic hepatitis C. J Gastroenterol. 2014;49(7):1152–62. https://doi.org/10.1007/s00535-013-0858-2.

    Article  CAS  PubMed  Google Scholar 

  119. Chang KC, Tseng PL, Wu YY, Hung HC, Huang CM, Lu SN, et al. A polymorphism in interferon L3 is an independent risk factor for development of hepatocellular carcinoma after treatment of hepatitis C virus infection. Clin Gastroenterol Hepatol. 2015;13(5):1017–24. https://doi.org/10.1016/j.cgh.2014.10.035.

    Article  CAS  PubMed  Google Scholar 

  120. Hodo Y, Honda M, Tanaka A, Nomura Y, Arai K, Yamashita T, et al. Association of interleukin-28B genotype and hepatocellular carcinoma recurrence in patients with chronic hepatitis C. Clin Cancer Res. 2013;19(7):1827–37. https://doi.org/10.1158/1078-0432.CCR-12-1641.

    Article  CAS  PubMed  Google Scholar 

  121. Tong HV, Toan NL, Song LH, Bock CT, Kremsner PG, Velavan TP. Hepatitis B virus-induced hepatocellular carcinoma: functional roles of MICA variants. J Viral Hepat. 2013;20(10):687–98. https://doi.org/10.1111/jvh.12089.

    Article  CAS  PubMed  Google Scholar 

  122. Huang CF, Wang SC, Yeh ML, Huang CI, Tsai PC, Lin ZY, et al. Association of serial serum major histocompatibility complex class I chain-related A measurements with hepatocellular carcinoma in chronic hepatitis C patients after viral eradication. J Gastroenterol Hepatol. 2019;34(1):249–55. https://doi.org/10.1111/jgh.14359.

    Article  CAS  PubMed  Google Scholar 

  123. Guyot E, Sutton A, Rufat P, Laguillier C, Mansouri A, Moreau R, et al. PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis. J Hepatol. 2013;58(2):312–8. https://doi.org/10.1016/j.jhep.2012.09.036.

    Article  CAS  PubMed  Google Scholar 

  124. Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, Dufour JF, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61(1):75–81. https://doi.org/10.1016/j.jhep.2014.02.030.

    Article  CAS  PubMed  Google Scholar 

  125. Falleti E, Fabris C, Cmet S, Cussigh A, Bitetto D, Fontanini E, et al. PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver Int. 2011;31(8):1137–43. https://doi.org/10.1111/j.1478-3231.2011.02534.x.

    Article  CAS  PubMed  Google Scholar 

  126. Yang J, Trepo E, Nahon P, Cao Q, Moreno C, Letouze E, et al. PNPLA3 and TM6SF2 variants as risk factors of hepatocellular carcinoma across various etiologies and severity of underlying liver diseases. Int J Cancer. 2019;144(3):533–44. https://doi.org/10.1002/ijc.31910.

    Article  CAS  PubMed  Google Scholar 

  127. Stickel F, Buch S, Nischalke HD, Weiss KH, Gotthardt D, Fischer J, et al. Genetic variants in PNPLA3 and TM6SF2 predispose to the development of hepatocellular carcinoma in individuals with alcohol-related cirrhosis. Am J Gastroenterol. 2018;113(10):1475–83. https://doi.org/10.1038/s41395-018-0041-8.

    Article  CAS  PubMed  Google Scholar 

  128. Falleti E, Cussigh A, Cmet S, Fabris C, Toniutto P. PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis. 2016;48(1):69–75. https://doi.org/10.1016/j.dld.2015.09.009.

    Article  CAS  PubMed  Google Scholar 

  129. Nahon P, Sutton A, Rufat P, Ziol M, Thabut G, Schischmanoff PO, et al. Liver iron, HFE gene mutations, and hepatocellular carcinoma occurrence in patients with cirrhosis. Gastroenterology. 2008;134(1):102–10. https://doi.org/10.1053/j.gastro.2007.10.038.

    Article  CAS  PubMed  Google Scholar 

  130. Hoshida Y, Villanueva A, Sangiovanni A, Sole M, Hur C, Andersson KL, et al. Prognostic gene expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology. 2013;144(5):1024–30. https://doi.org/10.1053/j.gastro.2013.01.021.

    Article  CAS  PubMed  Google Scholar 

  131. King LY, Canasto-Chibuque C, Johnson KB, Yip S, Chen X, Kojima K, et al. A genomic and clinical prognostic index for hepatitis C-related early-stage cirrhosis that predicts clinical deterioration. Gut. 2015;64(8):1296–302. https://doi.org/10.1136/gutjnl-2014-307862.

    Article  CAS  PubMed  Google Scholar 

  132. Kim JH, Sohn BH, Lee HS, Kim SB, Yoo JE, Park YY, et al. Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation. PLoS Med. 2014;11(12):e1001770. https://doi.org/10.1371/journal.pmed.1001770.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16(12):1235–44. https://doi.org/10.1038/ni.3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62(2):481–95. https://doi.org/10.1002/hep.27822.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang DY, Goossens N, Guo J, Tsai MC, Chou HI, Altunkaynak C, et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut. 2016;65(10):1754–64. https://doi.org/10.1136/gutjnl-2015-309655.

    Article  CAS  PubMed  Google Scholar 

  136. Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology. 2018;154(6):1706–18 e1. https://doi.org/10.1053/j.gastro.2018.01.064.

    Article  CAS  PubMed  Google Scholar 

  137. Tateishi R, Yoshida H, Matsuyama Y, Mine N, Kondo Y, Omata M. Diagnostic accuracy of tumor markers for hepatocellular carcinoma: a systematic review. Hepatol Int. 2008;2(1):17–30. https://doi.org/10.1007/s12072-007-9038-x.

    Article  PubMed  Google Scholar 

  138. Xing H, Zheng YJ, Han J, Zhang H, Li ZL, Lau WY, et al. Protein induced by vitamin K absence or antagonist-II versus alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: a systematic review with meta-analysis. Hepatobiliary Pancreat Dis Int. 2018;17(6):487–95. https://doi.org/10.1016/j.hbpd.2018.09.009.

    Article  PubMed  Google Scholar 

  139. Yang JD, Addissie BD, Mara KC, Harmsen WS, Dai J, Zhang N, et al. GALAD score for hepatocellular carcinoma detection in comparison to liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomark Prev. 2018. https://doi.org/10.1158/1055-9965.EPI-18-0281.

  140. Berhane S, Toyoda H, Tada T, Kumada T, Kagebayashi C, Satomura S, et al. Role of the GALAD and BALAD-2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients. Clin Gastroenterol Hepatol. 2016;14(6):875–86 e6. https://doi.org/10.1016/j.cgh.2015.12.042.

    Article  CAS  PubMed  Google Scholar 

  141. Mehta AS, Lau DT, Wang M, Islam A, Nasir B, Javaid A, et al. Application of the Doylestown algorithm for the early detection of hepatocellular carcinoma. PLoS One. 2018;13(8):e0203149. https://doi.org/10.1371/journal.pone.0203149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jia X, Liu J, Gao Y, Huang Y, Du Z. Diagnosis accuracy of serum glypican-3 in patients with hepatocellular carcinoma: a systematic review with meta-analysis. Arch Med Res. 2014;45(7):580–8. https://doi.org/10.1016/j.arcmed.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  143. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011;29(36):4781–8. https://doi.org/10.1200/JCO.2011.38.2697.

    Article  CAS  PubMed  Google Scholar 

  144. Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012;13(8):817–26. https://doi.org/10.1016/S1470-2045(12)70233-4.

    Article  CAS  PubMed  Google Scholar 

  145. Zhu WW, Guo JJ, Guo L, Jia HL, Zhu M, Zhang JB, et al. Evaluation of midkine as a diagnostic serum biomarker in hepatocellular carcinoma. Clin Cancer Res. 2013;19(14):3944–54. https://doi.org/10.1158/1078-0432.CCR-12-3363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vongsuvanh R, van der Poorten D, Iseli T, Strasser SI, McCaughan GW, George J. Midkine increases diagnostic yield in AFP negative and NASH-related hepatocellular carcinoma. PLoS One. 2016;11(5):e0155800. https://doi.org/10.1371/journal.pone.0155800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sun Y, Gao G, Cai J, Wang Y, Qu X, He L, et al. Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma. Carcinogenesis. 2013;34(3):595–604. https://doi.org/10.1093/carcin/bgs372.

    Article  CAS  PubMed  Google Scholar 

  148. Liu XE, Desmyter L, Gao CF, Laroy W, Dewaele S, Vanhooren V, et al. N-glycomic changes in hepatocellular carcinoma patients with liver cirrhosis induced by hepatitis B virus. Hepatology. 2007;46(5):1426–35. https://doi.org/10.1002/hep.21855.

    Article  CAS  PubMed  Google Scholar 

  149. Sun T, Tang Y, Sun D, Bu Q, Li P. Osteopontin versus alpha-fetoprotein as a diagnostic marker for hepatocellular carcinoma: a meta-analysis. Onco Targets Ther. 2018;11:8925–35. https://doi.org/10.2147/OTT.S186230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, et al. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol. 2005;43(6):1007–12. https://doi.org/10.1016/j.jhep.2005.05.028.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Hoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujiwara, N., Liu, PH., Athuluri-Divakar, S.K., Zhu, S., Hoshida, Y. (2019). Risk Factors of Hepatocellular Carcinoma for Precision Personalized Care. In: Hoshida, Y. (eds) Hepatocellular Carcinoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-21540-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21540-8_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-21539-2

  • Online ISBN: 978-3-030-21540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics