Skip to main content

Flexible Endoscopy: Optical Molecular Imaging

  • Chapter
  • First Online:
Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy

Part of the book series: Springer Theses ((Springer Theses))

  • 296 Accesses

Abstract

Wheat germ agglutinin (WGA) is a lectin that shows differential binding to Barrett’s oesophagus and dysplasia. Imaging of fluorescently labelled WGA has the potential to increase the sensitivity and specificity of Barrett’s surveillance, but is confounded by tissue autofluorescence in the visible region where commercially available endoscopes are optimised for detection. To address this challenge, WGA was conjugated to a near-infrared fluorophore (IR800) for NIR fluorescence imaging, thus avoiding the visible autofluorescence background, and a bimodal endoscope capable of acquisition and coregistration of white light reflectance images for endoscopic guidance and of NIR fluorescence images for optical molecular imaging of WGA-IR800 was designed and built. This Chapter describes the design and development of this novel endoscope described and the preliminary biological validation carried out using ex vivo mouse and human tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  Google Scholar 

  2. Sturm MB, Wang TD (2015) Emerging optical methods for surveillance of Barrett’s oesophagus. Gut 64:1816–1823

    Article  Google Scholar 

  3. Sevick-Muraca EM et al (2013) Advancing the translation of optical imaging agents for clinical imaging. Biomed Optics Express 4:160–170

    Article  Google Scholar 

  4. Sturm MB et al (2013) Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med 5:184ra61

    Article  Google Scholar 

  5. Joshi BP et al (2016) Multimodal endoscope can quantify wide-field fluorescence detection of Barrett’s neoplasia. Endoscopy 48

    Google Scholar 

  6. Bird-Lieberman EL et al (2012) Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med 18:315–321

    Article  Google Scholar 

  7. Waterhouse DJ et al (2016) Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy. J Biomed Optics 21:084001

    Article  ADS  Google Scholar 

  8. Habibollahi P et al (2012) Optical imaging with a cathepsin B activated probe for the enhanced detection of esophageal adenocarcinoma by dual channel fluorescent upper GI endoscopy. Theranostics 2:227–234

    Article  Google Scholar 

  9. Funovics MA et al (2003) Miniaturized multichannel near infrared endoscope for mouse imaging. Molecular imaging 2:350–357

    Article  Google Scholar 

  10. Realdon S et al (2015) In vivo molecular imaging of HER2 expression in a rat model of Barrett’s esophagus adenocarcinoma. Dis Esophagus 28:394–403

    Article  Google Scholar 

  11. Nakai Y, Shinoura S, Ahluwalia A, Tarnawski AS, Chang KJ (2012) Molecular imaging of epidermal growth factor-receptor and survivin in vivo in porcine esophageal and gastric mucosae using probe-based confocal laser-induced endomicroscopy: proof of concept. J Physiol Pharmacol 63:303–307

    Google Scholar 

  12. Li M et al (2010) Affinity peptide for targeted detection of dysplasia in Barrett’s esophagus. Gastroenterology 139:1472–1480

    Article  Google Scholar 

  13. Wong Kee Song LM et al (2011) Autofluorescence imaging. Gastrointestinal Endoscopy 73:647–650

    Article  Google Scholar 

  14. von Holstein CS et al (1996) Detection of adenocarcinoma in Barrett’s oesophagus by means of laser induced fluorescence. Gut 39:711–716

    Article  Google Scholar 

  15. Neves AA et al (2018) Detection of early neoplasia in Barrett’ s esophagus using lectin-based near-infrared imaging: an ex vivo study on human tissue. Endoscopy 50:618–625

    Article  Google Scholar 

  16. Spectra Viewer | Chroma Technology Corp. Available at: https://www.chroma.com/spectra-viewer. Accessed: 22nd Aug 2018

  17. LI-COR. IRDye® Infrared Dyes. Available at: https://www.licor.com/documents/eukougbp4lxjupcds7pqdjqyom13incs. Accessed: 22nd Aug 2018

  18. Garcia-Allende PB et al (2013) Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy. Biomed Optics Express 5:78–92

    Article  Google Scholar 

  19. Tjalma JJ et al (2016) Molecular-guided endoscopy targeting vascular endothelial growth factor a for improved colorectal polyp detection. J Nucl Med (official publication, Society of Nuclear Medicine) 57:480–486

    Google Scholar 

  20. Sheth RA et al (2016) Pilot clinical trial of indocyanine green fluorescence-augmented colonoscopy in high risk patients. Gastroenterol Res Pract 2016:6184842

    Article  ADS  Google Scholar 

  21. Glatz J et al (2014) Near-infrared fluorescence cholangiopancreatoscopy: initial clinical feasibility results. Gastrointest Endosc 79:664–668

    Article  ADS  Google Scholar 

  22. Sato K, Nagaya T, Choyke PL, Kobayashi H (2015) Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience. Theranostics 5:698

    Article  Google Scholar 

  23. ICNIRP (2013) ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Physics 71:804–819

    Google Scholar 

  24. Directive 2006/25/EC of the European Parliament and of the Council (2006)

    Google Scholar 

  25. Electron-Multiplying (EM) Gain. Available at: http://www.qimaging.com/resources/pdfs/emccd_technote.pdf

  26. Pelli DG, Bex P (2013) Measuring contrast sensitivity. Vision Res 90:10–14

    Article  Google Scholar 

  27. Kaye PV et al (2009) Barrett’s dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology 54:699–712

    Article  Google Scholar 

  28. Joshi BP et al (2016) Multimodal video colonoscope for targeted wide-field detection of nonpolypoid colorectal neoplasia. Gastroenterology 150:1084–1086

    Article  Google Scholar 

  29. Yang C, Hou V, Nelson LY, Seibel EJ (2013) Color-matched and fluorescence-labeled esophagus phantom and its applications. J Biomed Optics 18:26020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Jonathan Waterhouse .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waterhouse, D.J. (2019). Flexible Endoscopy: Optical Molecular Imaging. In: Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21481-4_4

Download citation

Publish with us

Policies and ethics