Skip to main content

Computer-Aided Drug Discovery

  • Chapter
  • First Online:
Advances in Animal Biotechnology

Abstract

Computer-aided drug designating or drug discovery is the methodology based on computational and bioinformatics approaches to discover, develop, and analyze the drugs and similar biologically active molecules. The computer-aided drug discovery is benefited from massive genome and proteome data of pathogens and hosts accessible for analysis and interpretation. It is possible to discover potential proteins and metabolic pathways of pathogenic microorganisms and the parasites and develop novel biomolecules as drugs or therapeutics.

Highlights

  • Computer-aided drug discovery is an in silico method of developing drugs or drug-like molecules

  • The technique has important contribution to develop drugs against pathogens and parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506

    Article  CAS  Google Scholar 

  • Acharya C, Coop A, Polli JE, Mackerell AD Jr (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des. 2011 Mar;7(1):10–22 (Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akamatsu M (2002) Current state and perspectives of 3D-QSAR. Curr Top Med Chem 2(12):1381–1394 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Alberg DG, Schreiber SL (1993) Structure-based design of a cyclophilin-calcineurin bridging ligand. Science 262(5131):248–250

    Article  CAS  PubMed  Google Scholar 

  • Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: Impact of new features and current docking performance. J Comput Chem 36(15):1132–1156. https://doi.org/10.1002/jcc.23905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcellos GB, Pauli I, Caceres RA, Timmers LF, Dias R, de Azevedo WF Jr (2008) Molecular modeling as a tool for drug discovery. Curr Drug Targets 9(12):1084–1091 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2006) The protein data bank, 1999. In: International tables for crystallography volume F: crystallography of biological macromolecules. Springer, Netherlands, pp. 675–684

    Chapter  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–W258. https://doi.org/10.1093/nar/gku340. Epub 2014 Apr 29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemical Computing Group, M. O. E. (2008) Molecular operating environment

    Google Scholar 

  • Cramer RD 3rd, Patterson DE, Bunce JD (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog Clin Biol Res 291:161–165

    CAS  PubMed  Google Scholar 

  • Dai J, Dan W, Li N, Wang J (2018) Computer-aided drug discovery: novel 3,9-disubstituted eudistomin U derivatives as potent antibacterial agents. Eur J Med Chem 5(157):333–338. https://doi.org/10.1016/j.ejmech.2018.08.001 (Epub 2018 Aug 4)

    Article  CAS  Google Scholar 

  • De B, Bhandari K, Mendonça FJB, Scotti MT, Scotti L (2018) Computational studies in drug design against cancer. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520618666180911125700 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Dias R, de Azevedo Jr WF (2008) Molecular docking algorithms. Curr Drug Targets 9(12):1040–1047 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Du QS, Huang RB, Wang SQ, Chou KC (2010) Designing inhibitors of M2 proton channel against H1N1 swine influenza virus. PLoS ONE 5(2):e9388. https://doi.org/10.1371/journal.pone.0009388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich P (1909) Ãœber den jetzigen Stand der Chemotherapie. Eur J Inorg Chem 42(1):17–47

    CAS  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Gaudreault F, Najmanovich RJ (2015) FlexAID: revisiting docking on non-native-complex structures. J Chem Inf Model 55(7):1323–1336. https://doi.org/10.1021/acs.jcim.5b00078 (Epub 2015 Jun 24)

    Article  CAS  PubMed  Google Scholar 

  • Glicksberg BS, Li L, Chen R, Dudley J, Chen B (2019) Leveraging big data to transform drug discovery. Methods Mol Biol 1939:91–118. https://doi.org/10.1007/978-1-4939-9089-4_6

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8(3):195–202

    Article  CAS  PubMed  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2007) EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins. 67(4):1010–1025

    Article  CAS  PubMed  Google Scholar 

  • Gund P (1977) Three-dimensional pharmacophoric pattern searching. In: Progress in molecular and subcellular biology. Springer, Berlin, pp 117–143

    Chapter  Google Scholar 

  • Hammes GG (2002) Multiple conformational changes in enzyme catalysis. Biochemistry. 2002 Jul 2;41(26):8221–8 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46(4):499–511

    Article  CAS  PubMed  Google Scholar 

  • Joo K, Lee J, Lee J (2012) Methods for accurate homology modeling by global optimization. Methods Mol Biol 857:175–188. https://doi.org/10.1007/978-1-61779-588-6_7

    Article  CAS  PubMed  Google Scholar 

  • Källberg M, Margaryan G, Wang S, Ma J, Xu J (2014) RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 1137:17–27. https://doi.org/10.1007/978-1-4939-0366-5_2

    Article  CAS  PubMed  Google Scholar 

  • Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171(2):165–176 (Epub 2006 Dec 16. Review)

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053 (Epub 2015 May 7)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(Web Server issue):W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37(24):4130–4146

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi H (2006a) Success stories of computer-aided design. Comput Appl Pharm Res Develop 2:377

    Article  Google Scholar 

  • Kubinyi H (2006b) Chemogenomics in drug discovery. Ernst Schering Res Found Workshop. 58:1–19

    Article  CAS  Google Scholar 

  • Lambert C, Léonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18(9):1250–1256

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Wang S (1999) MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13(5):435–451

    Article  CAS  PubMed  Google Scholar 

  • Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325 (Review)

    Article  PubMed  Google Scholar 

  • McGuffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB (2015) IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res 43(W1):W169–W173. https://doi.org/10.1093/nar/gkv236 (Epub 2015 Mar 27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezei M (2003) A novel fingerprint for the characterization of protein folds. Protein Eng 16(10):713–715

    Article  CAS  PubMed  Google Scholar 

  • Paul DS, Gautham N (2016) MOLS 2.0: software package for peptide modeling and protein-ligand docking. J Mol Model 22(10):239. https://doi.org/10.1007/s00894-016-3106-x (Epub 2016 Sep 16)

  • Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489

    Article  CAS  PubMed  Google Scholar 

  • Ricci-López J, Vidal-Limon A, Zunñiga M, Jimènez VA, Alderete JB, Brizuela CA, Aguila S (2019) Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein. PLoS ONE 14(3):e0213028. https://doi.org/10.1371/journal.pone.0213028 (eCollection 2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10(4):e1003571. https://doi.org/10.1371/journal.pcbi.1003571 (eCollection 2014 Apr)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaikh SA, Jain T, Sandhu G, Latha N, Jayaram B (2007) From drug target to leads–sketching a physicochemical pathway for lead molecule design in silico. Curr Pharm Des 13(34):3454–3470 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Sharma A, Verma SK, Singh B (2019) Targeting metabolic pathways proteins of Orientia tsutsugamushi using combined hierarchical approach to combat scrub typhus. J Mol Recognit 32(4):e2766. https://doi.org/10.1002/jmr.2766 (Epub 2018 Oct 21)

    Article  PubMed  Google Scholar 

  • Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865 (Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva LC, Neves BJ, Gomes MN, Melo-Filho CC, Soares CM, Andrade CH, Pereira M (2018) Computer-aided identification of novel anti-paracoccidioidomycosis compounds. Future Microbiol 13:1523–1535. https://doi.org/10.2217/fmb-2018-0175 (Epub 2018 Oct 12)

    Article  CAS  PubMed  Google Scholar 

  • Sindhikara D, Spronk SA, Day T, Borrelli K, Cheney DL, Posy SL (2017) Improving accuracy, diversity, and speed with prime macrocycle conformational sampling. J Chem Inf Model 57(8):1881–1894. https://doi.org/10.1021/acs.jcim.7b00052 (Epub 2017 Aug 8)

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Sharma D, Singh V, Rani J, Marotta F, Kumar M, Mal G, Singh B (2017) In silico functional elucidation of uncharacterized proteins of Chlamydia abortus strain LLG. Future Sci OA 3(1):FSO169. https://doi.org/10.4155/fsoa-2016-0066 (eCollection 2017 Mar. Erratum in: Future Sci OA. 2017 Oct 05;3(4):FSO66C1)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2013) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395. https://doi.org/10.1124/pr.112.007336 (Print 2014. Review)

    Article  PubMed  Google Scholar 

  • Sujatha K, Mahalakshmi A, Solaiman DK, Shenbagarathai R (2009) Sequence analysis, structure prediction, and functional validation of phaC1/phaC2 genes of Pseudomonas sp. LDC-25 and its importance in polyhydroxyalkanoate accumulation. J Biomol Struct Dyn 26(6):771–779

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Burnett RM (2000) DARWIN: a program for docking flexible molecules. Proteins 41(2):173–191

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Drie JH (2003) Pharmacophore discovery–lessons learned. Curr Pharm Des9(20):1649–1664 (Review)

    Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623

    Article  CAS  PubMed  Google Scholar 

  • Verlinde CL, Hol WG (1994) Structure-based drug design: progress, results and challenges. Structure 2(7):577–587 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303

    Article  CAS  PubMed  Google Scholar 

  • Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15. https://doi.org/10.1007/978-1-4939-0366-5_1

    Article  CAS  PubMed  Google Scholar 

  • Zhong F, Xing J, Li X, Liu X, Fu Z, Xiong Z, Lu D, Wu X, Zhao J, Tan X, Li F, Luo X, Li Z, Chen K, Zheng M, Jiang H (2018) Artificial intelligence in drug design. Sci China Life Sci. https://doi.org/10.1007/s11427-018-9342-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birbal Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Mal, G., Gautam, S.K., Mukesh, M. (2019). Computer-Aided Drug Discovery. In: Advances in Animal Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-21309-1_44

Download citation

Publish with us

Policies and ethics