Skip to main content

Nutritional and Industrial Relevance of Particular Neotropical Pseudo-cereals

  • Chapter
  • First Online:
Book cover Food Tech Transitions

Abstract

Several pseudo-cereals (plants not belonging to the Poaceae family but with uses similar to those of the traditional cereals) of Neotropical origin have been cultivated and consumed since pre-Columbian times by indigenous communities. Nowadays, some of these crops are gaining the interest of consumers, because of their functional properties and convenience in case of particular medical conditions (like celiac disease). For the food industry sector, these pseudo-cereals offer the opportunity to develop new ingredients and products to reach these new markets, by promoting them as new health-beneficial alternatives. In this chapter, we focus on eight Neotropical pseudo-cereals (i.e., common bean, amaranth, quinoa, chia, chan, jícaro seeds, ojoche and the Andean lupine). For each one, some background on the origin/distribution and traditional importance has been included, followed by data on its nutrition relevance and consumption habits, and finalizing with recent discoveries in terms of its functional properties and possibilities for industrialization. Information available varies according to crop, having some, like the common bean, more relevance, tradition and are more widespread. Others are barely and only locally known, and the information available is more limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre, C., Torres, I., Mendoza-Hernández, G., Garcia-Gasca, T., & Blanco-Labra, A. (2012). Analysis of protein fractions and some minerals present in chan (Hyptis suaveolens L.) seeds. Journal of Food Science, 77(1), C15–C19.

    Article  CAS  PubMed  Google Scholar 

  • Algara-Suárez, P., Gallegos-Martínez, J., & Reyes-Hernández, J. (2016). El amaranto y sus efectos terapéuticos. Tlatemoani, 21, 55–73.

    Google Scholar 

  • Aspinall, G. O., Capek, P., Carpenter, R. C., Gowda, D. C., & Szafranek, J. (1991). A novel L-fuco-4-O-methyl-D-glucurono-D-xylan from Hyptis suaveolens. Carbohydrate Research, 214(1), 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Assad, R., Reshi, Z. A., Jan, S., & Rashid, I. (2017). Biology of amaranths. The Botanical Review, 83(4), 382–436.

    Article  Google Scholar 

  • Awika, J. M., Rose, D. J., & Simsek, S. (2018). Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food & Function, 9(3), 1389–1409.

    Article  CAS  Google Scholar 

  • Bachheti, R. K., Rai, I., Joshi, A., & Satyan, R. S. (2015). Chemical composition and antimicrobial activity of Hyptis suaveolens Poit. seed oil from Uttarakhand State, India. Oriental Pharmacy and Experimental Medicine, 15(2), 141–146.

    Article  CAS  Google Scholar 

  • Barrett, M. L., & Udani, J. K. (2011). A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutrition Journal, 10(1), 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird, G. W. G. (1959). Anti-A Hæmagglutinins from a non-leguminous plant – Hyptis suaveolens Poit. Nature, 184(4680), 109.

    Article  CAS  PubMed  Google Scholar 

  • Bochicchio, R., Philips, T. D., Lovelli, S., Labella, R., Galgano, F., Di Marisco, A., Perniola, M., & Amato, M. (2015). Innovative crop productions for healthy food: the case of chia (Salvia hispanica L.). In: Vastola A (ed) The sustainability of agro-food and natural resource systems in the Mediterranean Basin. Springer International Publishing, Cham, (pp. 29–45).

    Google Scholar 

  • Bojórquez-Velázquez, E., Lino-López, G. J., Huerta-Ocampo, J. A., Barrera-Pacheco, A., de la Rosa, A. P. B., Moreno, A., Mancilla-Margalli, N. A., & Osuna-Castro, J. A. (2016). Purification and biochemical characterization of 11S globulin from chan (Hyptis suaveolens L. Poit) seeds. Food Chemistry, 192, 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Bonilla, A. R., Cubero, E., & Reyes, Y. (2017). Bean (Phaseolus vulgaris) treatments effect on starch digestible fractions and consumer acceptability in the production of bean wheat cookies. Journal of Food and Nutritional Disorders, 6(3). 

    Google Scholar 

  • Capúz, N. G., & Pilamala, A. (2015). Elaboración de salchicha escaldada con sustitución parcial de harina de trigo por harina de amaranto. Cienc E Investig, 23, 5–10.

    Google Scholar 

  • Carvajal-Larenas, F. E., Linnemann, A. R., Nout, M. J. R., Koziol, M., & Van Boekel, M. A. J. S. (2016). Lupinus mutabilis: Composition, uses, toxicology, and debittering. Critical Reviews in Food Science and Nutrition, 56(9), 1454–1487.

    Article  CAS  PubMed  Google Scholar 

  • Castañeda Castañeda, B., Manrique, M., Gamarra Castillo, F., Muñoz Jáuregui, A., Ramos, E., Lizaraso Caparó, F., & Martínez, J. (2008). Probiótico elaborado en base a las semillas de Lupinus mutabilis sweet (chocho o tarwi). Acta Médica Peruana, 25(4), 210–215.

    Google Scholar 

  • Coelho, M. S., & de las Mercedes Salas-Mellado, M. (2015). Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT- Food Science and Technology, 60(2), 729–736.

    Article  CAS  Google Scholar 

  • Corrales, C. V., Achir, N., Forestier, N., Lebrun, M., Maraval, I., Dornier, M., Perez, A. M., Vaillant, F., & Fliedel, G. (2017a). Innovative process combining roasting and tempering to mechanically dehull jicaro seeds (Crescentia alata KHB). Journal of Food Engineering, 212, 283–290.

    Article  CAS  Google Scholar 

  • Corrales, C. V., Fliedel, G., Perez, A. M., Servent, A., Prades, A., Dornier, M., Lomonte, B., & Vaillant, F. (2017b). Physicochemical characterization of jicaro seeds (Crescentia alata HBK): A novel protein and oleaginous seed. Journal of Food Composition and Analysis, 56, 84–92.

    Article  CAS  Google Scholar 

  • Corrales, C. V., Lebrun, M., Vaillant, F., Madec, M. N., Lortal, S., Pérez, A. M., & Fliedel, G. (2017c). Key odor and physicochemical characteristics of raw and roasted jicaro seeds (Crescentia alata KHB). Food Research International, 96, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Cotabarren, J., Rosso, A. M., Tellechea, M., García-Pardo, J., Rivera, J. L., Obregón, W. D., & Parisi, M. G. (2019). Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry, 274, 848–856.

    Article  CAS  PubMed  Google Scholar 

  • da Silva Marineli, R., Moraes, É. A., Lenquiste, S. A., Godoy, A. T., Eberlin, M. N., & Maróstica, M. R., Jr. (2014). Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT- Food Science and Technology, 59(2), 1304–1310.

    Article  CAS  Google Scholar 

  • de la Barca, A. M. C., Rojas-Martínez, M. E., Islas-Rubio, A. R., & Cabrera-Chávez, F. (2010). Gluten-free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods for Human Nutrition, 65(3), 241–246.

    Article  PubMed  CAS  Google Scholar 

  • De Mejia, E. G., Valadez-Vega, M. D. C., Reynoso-Camacho, R., & Loarca-Pina, G. (2005). Tannins, trypsin inhibitors and lectin cytotoxicity in tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) beans. Plant Foods for Human Nutrition, 60(3), 137–145.

    Article  CAS  PubMed  Google Scholar 

  • De la Cruz-Torres, L. F., Pérez-Martínez, J. D., Sánchez-Becerril, M., Toro-Vázquez, J. F., Mancilla-Margalli, N. A., Osuna-Castro, J. A., VillaVelázquez-Mendoza, C. I. (2017). Physicochemical and functional properties of 11S globulin from chan (Hyptis suaveolens L. poit) seeds. Journal of Cereal Science, 77, 66–72.

    Google Scholar 

  • Earle, F. R., & Jones, Q. (1962). Analyses of seed samples from 113 plant families. Economic Botany, 16(4), 221–250.

    Article  CAS  Google Scholar 

  • Figueroa-González, J. J., Guzmán-Maldonado, S. H., & Herrera-Hernández, M. G. (2015). Atributo nutricional y nutracéutica de panqué y barritas a base de harina de frijol (Phaseolus vulgaris L.). Biotecnia, 17, 9–14.

    Article  Google Scholar 

  • Fiorito, S., Epifano, F., Taddeo, V. A., & Genovese, S. (2018). Recent acquisitions on oxyprenylated secondary metabolites as anti-inflammatory agents. European Journal of Medicinal Chemistry, 153, 116–122.

    Article  PubMed  Google Scholar 

  • Ganesan, K., & Xu, B. (2017). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. International Journal of Molecular Sciences, 18(11), 2331.

    Article  PubMed Central  CAS  Google Scholar 

  • García, O., Acevedo, I., & Ruiz-Ramirez, J. (2013). Efecto de adición de la harina de Phaseolus vulgaris sobre las propiedades fisicoquímicas y sensoriales de la bologna. Gaceta de Ciencias Veterinarias, 18(2), 47–54.

    Google Scholar 

  • Gowda, D. C. (1984). Polysaccharide components of the seed-coat mucilage from Hyptis suaveolens. Phytochemistry, 23(2), 337–338.

    Article  CAS  Google Scholar 

  • Güémes-Vera, N., Peña-Bautista, R. J., Jiménez-Martínez, C., Dávila-Ortiz, G., & Calderón-Domínguez, G. (2008). Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of these derivatives on bread quality and acceptance. Journal of the Science of Food and Agriculture, 88(7), 1135–1143.

    Article  CAS  Google Scholar 

  • González-Ramírez, J. E., de Lira, R. F., Martínez, R. C., & Salgado, J. L. M. (2013). Perspectivas de nuevos productos a base de amaranto: cerveza artesanal de amaranto. Tlatemoani, 14.

    Google Scholar 

  • Hayat, I., Ahmad, A., Masud, T., Ahmed, A., & Bashir, S. (2014). Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Critical Reviews in Food Science and Nutrition, 54(5), 580–592.

    Article  CAS  PubMed  Google Scholar 

  • Janzen, D. H. (1982). Fruit traits, and seed consumption by rodents, of Crescentia alata (Bignoniaceae) in Santa Rosa National Park, Costa Rica. American Journal of Botany, 69(8), 1258–1268.

    Article  Google Scholar 

  • Jeske, S., Zannini, E., Lynch, K. M., Coffey, A., & Arendt, E. K. (2018). Polyol-producing lactic acid bacteria isolated from sourdough and their application to reduce sugar in a quinoa-based milk substitute. International Journal of Food Microbiology, 286, 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35–68.

    Article  Google Scholar 

  • Levent, H. (2017). Effect of partial substitution of gluten-free flour mixtures with chia (Salvia hispanica L.) flour on quality of gluten-free noodles. Journal of Food Science and Technology, 54(7), 1971–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A., & Demiate, I. M. (2018). Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Current Opinion in Food Science, 19, 63–71.

    Article  Google Scholar 

  • Luis F. De la Cruz-Torres, Jaime D. Pérez-Martínez, Mayra Sánchez-Becerril, Jorge F. Toro-Vázquez, N. Alejandra Mancilla-Margalli, Juan A. Osuna-Castro, C.I. VillaVelázquez-Mendoza (2017). Physicochemical and functional properties of 11S globulin from chan (Hyptis suaveolens L. poit) seeds. Journal of Cereal Science, 77:66–72.

    Google Scholar 

  • Luna-Vital, D. A., Mojica, L., de Mejía, E. G., Mendoza, S., & Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Research International, 76, 39–50.

    Article  CAS  Google Scholar 

  • Mapes, C., & Basurto, F. (2016). Biodiversity and edible plants of Mexico. In R. Lira, A. Casas, & J. Blancas (Eds.), Ethnobotany of Mexico (pp. 83–131). New York: Springer.

    Chapter  Google Scholar 

  • Martínez, M. L., Marín, M. A., Faller, C. M. S., Revol, J., Penci, M. C., & Ribotta, P. D. (2012). Chia (Salvia hispanica L.) oil extraction: Study of processing parameters. LWT- Food Science and Technology, 47(1), 78–82.

    Article  CAS  Google Scholar 

  • Mecha, E., Figueira, M. E., Patto, M. C. V., & Bronze, M. (2018). Two sides of the same coin: The impact of grain legumes on human health: Common bean (Phaseolus vulgaris L.) as a case study. In Legume seed nutraceutical research. IntechOpen, London, UK (pp. 25–46).

    Google Scholar 

  • Mir, N. A., Riar, C. S., & Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology, 75, 170–180.

    Article  CAS  Google Scholar 

  • Mueller, M., Čavarkapa, A., Unger, F. M., Viernstein, H., & Praznik, W. (2017). Prebiotic potential of neutral oligo-and polysaccharides from seed mucilage of Hyptis suaveolens. Food Chemistry, 221, 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Mujica, A. (1992). Granos y leguminosas andinas. In E. Hernández-Bermejo & J. León (Eds.), Cultivos marginados: otra perspectiva de 1492 (pp. 129–146). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Muñoz, E. B., Luna-Vital, D. A., Fornasini, M., Baldeón, M. E., & de Mejia, E. G. (2018). Gamma-conglutin peptides from Andean lupin legume (Lupinus mutabilis Sweet) enhanced glucose uptake and reduced gluconeogenesis in vitro. Journal of Functional Foods, 45, 339–347.

    Article  CAS  Google Scholar 

  • Narwade, S., & Pinto, S. (2018). Amaranth – A functional food. Concepts Dairy & Veterinary Science, 1, 72–77.

    Google Scholar 

  • Nitrayová, S., Brestenský, M., Heger, J., Patráš, P., Rafay, J., & Sirotkin, A. (2014). Amino acids and fatty acids profile of chia (Salvia hispanica L.) and flax (Linum usitatissimum L.) seed. Potravinarstvo Scientific Journal for Food Industry, 8, 72–76.

    Google Scholar 

  • Obiro, W. C., Zhang, T., & Jiang, B. (2008). The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. British Journal of Nutrition, 100(1), 1–12.

    Article  CAS  Google Scholar 

  • Padhi, E. M., & Ramdath, D. D. (2017). A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. Journal of Functional Foods, 38, 635–643.

    Article  Google Scholar 

  • Pérez-Orozco, J. P., Sánchez-Herrera, L. M., & Ortiz-Basurto, R. I. (2019). Effect of concentration, temperature, pH, co-solutes on the rheological properties of Hyptis suaveolens L. mucilage dispersions. Food Hydrocolloids, 87, 297–306.

    Article  CAS  Google Scholar 

  • Peters, C. M., & Pardo-Tejeda, E. (1982). Brosimum alicastrum (Moraceae): Uses and potential in Mexico. Economic Botany, 36(2), 166–175.

    Article  CAS  Google Scholar 

  • Petry, N., Boy, E., Wirth, J., & Hurrell, R. (2015). The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients, 7(2), 1144–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro, P. L., Almeida, E. L., Sammán, N. C., & Chang, Y. K. (2013). Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. LWT- Food Science and Technology, 54(1), 73–79.

    Article  CAS  Google Scholar 

  • Ponce, M., Navarrete, D., & Vernaza, M. G. (2018). Sustitución Parcial de Harina de Trigo por Harina de Lupino (Lupinus mutabilis Sweet) en la Producción de Pasta Larga. Información tecnológica, 29(2), 195–204.

    Article  Google Scholar 

  • Praznik, W., Čavarkapa, A., Unger, F. M., Loeppert, R., Holzer, W., Viernstein, H., & Mueller, M. (2017). Molecular dimensions and structural features of neutral polysaccharides from the seed mucilage of Hyptis suaveolens L. Food Chemistry, 221, 1997–2004.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pacheco, E., Moo-Huchin, R. J. Estrada-León, R. J., Ortiz-Fernández, A., May-Hernández, L. H., Ríos-Soberanis, C. R., Betancur-Ancona, D. (2014). Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydrate Polymers 101:920–927.

    Google Scholar 

  • Ramírez-Jiménez, A. K., Reynoso-Camacho, R., Tejero, M. E., León-Galván, F., & Loarca-Pina, G. (2015). Potential role of bioactive compounds of Phaseolus vulgaris L. on lipid-lowering mechanisms. Food Research International, 76, 92–104.

    Article  CAS  Google Scholar 

  • Ramírez-Sánchez, S., Ibáñez-Vázquez, D., Gutiérrez-Peña, M., Ortega-Fuentes, M. S., García-Ponce, L. L., & Larqué-Saavedra, A. (2017). El Ramón (Brosimum alicastrum Swartz) una alternativa para la seguridad alimentaria en México. Agroproductividad, 10(1), 80–83.

    Google Scholar 

  • Rastogi, A., & Shukla, S. (2013). Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition, 53(2), 109–125.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues Oliveira, M., Ercolani Novack, M., Pires Santos, C., Kubota, E., & Severo da Rosa, C. (2015). Evaluation of replacing wheat flour with chia flour (Salvia hispanica L.) in pasta. Semina: Ciências Agrárias, 36(4), 2545–2553.

    Google Scholar 

  • Rodríguez, S. D., Rolandelli, G., & Buera, M. P. (2019). Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chemistry, 274, 392–401.

    Article  PubMed  CAS  Google Scholar 

  • Rojas, V. M., Marconi, L. F. D. C. B., Guimarães-Inácio, A., Leimann, F. V., Tanamati, A., Gozzo, Â. M., Fuchs, R. H. B., Barreiro, M. F., Barros, L., Ferreira, I. C., & Tanamati, A. A. C. (2019). Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, 274, 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Sandri, L. T., Santos, F. G., Fratelli, C., & Capriles, V. D. (2017). Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Science & Nutrition, 5(5), 1021–1028.

    Article  CAS  Google Scholar 

  • Santos, C. N., Ferreira, R. B., & Teixeira, A. R. (1997). Seed proteins of Lupinus mutabilis. Journal of Agricultural and Food Chemistry, 45(10), 3821–3825.

    Article  CAS  Google Scholar 

  • Sargi, S. C., Silva, B. C., Santos, H. M. C., Montanher, P. F., Boeing, J. S., Júnior, S., Oliveira, O., Souza, N. E., & Visentainer, J. V. (2013). Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Science and Technology, 33(3), 541–548.

    Article  Google Scholar 

  • Schoeneberger, H., Gross, R., Cremer, H. D., & Elmadfa, I. (1982). Composition and protein quality of Lupinus mutabilis. The Journal of Nutrition, 112(1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos, A. P. (2016). Evolutionary aspects of the dietary omega-6/omega-3 fatty acid ratio: Medical implications. In A. Alvergne, C. Jenkinson, & C. Faurie (Eds.), Evolutionary thinking in medicine (pp. 119–134). Cham: Springer.

    Chapter  Google Scholar 

  • Steffolani, E., De la Hera, E., Pérez, G., & Gómez, M. (2014). Effect of chia (Salvia hispanica L) addition on the quality of gluten-free bread. Journal of Food Quality, 37(5), 309–317.

    Article  CAS  Google Scholar 

  • Suárez-Estrella, D., Torri, L., Pagani, M. A., & Marti, A. (2018). Quinoa bitterness: Causes and solutions for improving product acceptability. Journal of the Science of Food and Agriculture, 98(11), 4033–4041.

    Article  PubMed  CAS  Google Scholar 

  • Suárez-Martínez, S. E., Ferriz-Martínez, R. A., Campos-Vega, R., Elton-Puente, J. E., de la Torre Carbot, K., & García-Gasca, T. (2016). Bean seeds: Leading nutraceutical source for human health. CyTA Journal of Food, 14(1), 131–137.

    Article  Google Scholar 

  • Tao, J., Li, Y., Li, S., & Li, H. B. (2018). Plant foods for the prevention and management of colon cancer. Journal of Functional Foods, 42, 95–110.

    Article  CAS  Google Scholar 

  • Valcárcel-Yamani, B., & Lannes, S. D. S. (2012). Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Food and Public Health, 2(6), 265–275.

    Google Scholar 

  • Vishwakarma, R. K., Shivhare, U. S., Gupta, R. K., Yadav, D. N., Jaiswal, A., & Prasad, P. (2018). Status of pulse milling processes and technologies: A review. Critical Reviews in Food Science and Nutrition, 58(10), 1615–1628.

    Article  PubMed  Google Scholar 

  • Vuksan, V., Jenkins, A. L., Brissette, C., Choleva, L., Jovanovski, E., Gibbs, A. L., Bazinet, R. P., Au-Yeung, F., Zurbau, A., Ho, H. V. T., & Duvnjak, L. (2017). Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutrition, Metabolism, and Cardiovascular Diseases, 27(2), 138–146.

    Article  CAS  PubMed  Google Scholar 

  • Weber, C. W., Gentry, H. S., Kohlhepp, E. A., & McCrohan, P. R. (1991). The nutritional and chemical evaluation of chia seeds. Ecology of Food and Nutrition, 26(2), 119–125.

    Article  Google Scholar 

  • Yang, Q. Q., Gan, R. Y., Ge, Y. Y., Zhang, D., & Corke, H. (2018). Polyphenols in common beans (Phaseolus vulgaris L.): Chemistry, analysis, and factors affecting composition. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1518–1539.

    Article  CAS  PubMed  Google Scholar 

  • Zambrana, S., Lundqvist, L., Mamani, O., Catrina, S. B., Gonzales, E., & Östenson, C. G. (2018). Lupinus mutabilis extract exerts an anti-diabetic effect by improving insulin release in type 2 diabetic Goto-Kakizaki rats. Nutrients, 10(7), 933.

    Article  PubMed Central  CAS  Google Scholar 

  • Zannini, E., Jeske, S., Lynch, K. M., & Arendt, E. K. (2018). Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. International Journal of Food Microbiology, 268, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Acuña-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acuña-Gutiérrez, C., Campos-Boza, S., Hernández-Pridybailo, A., Jiménez, V.M. (2019). Nutritional and Industrial Relevance of Particular Neotropical Pseudo-cereals. In: Piatti, C., Graeff-Hönninger, S., Khajehei, F. (eds) Food Tech Transitions. Springer, Cham. https://doi.org/10.1007/978-3-030-21059-5_4

Download citation

Publish with us

Policies and ethics