Skip to main content

Genotoxicity of the Residues of Anticancer Drugs: A Hazard for Aquatic Environment

  • Chapter
  • First Online:
Fate and Effects of Anticancer Drugs in the Environment

Abstract

Anticancer drugs are a group of pharmaceuticals that are used in cancer treatment. These drugs have high pharmacological potency and are designed to kill tumour cells or to prevent and disrupt tumour cell division by interfering with genetic material or processes that govern their replication. However, anticancer drugs do not affect only cancer cells but also dividing normal cells. After human consumption, anticancer drug residues are released into the environment as parent compounds and their metabolites, where they might affect non-target environmental organisms even at the level of sub- to few ng/L in particular during chronic exposure. Recent ecotoxicological studies that included also detection of genotoxic effects of selected anticancer drugs with different mechanisms of chemotherapeutic action demonstrated high differences in the sensitivity of different aquatic organisms in regard to lethal and reproductive effects. However, in all organisms, the concentrations at which mortality and reproductive effects were observed were higher than the concentrations that were detected or expected in the environmental samples. On the contrary, the genotoxic effects of certain anticancer drugs were in crustacean and fish detected at concentrations that may occur in the aquatic environment. Thus, potential ecological risks for invertebrates and vertebrates cannot be ruled out. The results clearly demonstrated that residues of certain anticancer drugs are hazardous for aquatic environment; thus, further research and activities are needed that will enable reliable environmental risk assessment and introduction of measures to reduce their release into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment: estimation of bleomycin in river and water samples. J Pharm Pharmacol 42:741–742

    Article  CAS  Google Scholar 

  • Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 315:971–979

    Article  CAS  Google Scholar 

  • Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39:73–86

    Article  CAS  Google Scholar 

  • Bolognesi C, Cirillo S (2014) Genotoxicity biomarkers in aquatic bioindicators. Curr Zool 60:273–284

    Article  CAS  Google Scholar 

  • Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26:205–213

    Article  CAS  Google Scholar 

  • Booker V, Halsall C, Llewellyn N, Johnson A, Williams R (2014) Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473-474:159–170

    Article  CAS  Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  Google Scholar 

  • Brezovšek P, Elersek T, Filipic M (2014) Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Res 52:168–177

    Article  CAS  Google Scholar 

  • Buerge IJ, Buser HR, Poiger T, Muller MD (2006) Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ Sci Technol 40:7242–7250

    Article  CAS  Google Scholar 

  • Catastini C, Mullot J-U, Boukari S, Mazellier P, Levi Y, Cervantes P, Ormsby J-N (2008) Assessment of antineoplastic drugs in effluents of two hospitals |Identification de molecules anticancéreuses dans les effluents hospitaliers. J Eur Hydrol 39(2):171–180

    CAS  Google Scholar 

  • Daughton CG (2002) Environmental stewardship and drugs as pollutants. Lancet 360:1035–1036

    Article  Google Scholar 

  • Dong Z, Senn DB, Moran RE, Shine JP (2013) Prioritizing environmental risk of prescription pharmaceuticals. Regul Toxicol Pharmacol 65:60–67

    Article  CAS  Google Scholar 

  • EMA (European Medicines Agency) (2006) Guidelines on the environmental risk assessment of medicinal products for human use. European Chemical Agency. Doc ref. EMEA/CHMP/SWP/4447/00

    Google Scholar 

  • European Commission (2003) Technical guidance document on risk assessment in support of commission Directive 93/67/EEC on Risk assessment for new notified substances commission regulation (EC) No 1488/94, on Risk assessment for existing substances directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market. Institute for Health and Consumer Protection, European Chemicals Bureau

    Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferrando-Climent L, Rodriguez-Mozaz S, Barcelo D (2014) Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 193:216–223

    Article  CAS  Google Scholar 

  • Fleming RA (1997) An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy 17:146S–154S

    CAS  Google Scholar 

  • Franquet-Griell H, Cornadó D, Caixach J, Ventura F, Lacorte S (2017) Determination of cytostatic drugs in Besòs River (NE Spain) and comparison with predicted environmental concentrations. Environ Sci Pollut Res 24:6492

    Article  CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res Rev Mutat Res 681:80–92

    Article  CAS  Google Scholar 

  • Fuerhacker M et al (2006) Chemische Analyse, Risikobewertungund Entfernung von ausgewählten Zytostatika aus Abwasserströmen aus Krankenhäusern Risikoabschätzung und Risikomanagement, Teil II “Risikoabschätzung und Risikomanagement”. Fördervertrag der ÖKK:GZ A201860, Lebensministerium: 1–168, Wien

    Google Scholar 

  • Hagner N, Joerger M (2010) Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res 2:293–301

    CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernndez-Alba AR, Barcelo D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    Article  CAS  Google Scholar 

  • Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical datasets collected from river systems. Environ Sci Technol 47:661–677

    Article  CAS  Google Scholar 

  • Isidori M, Lavorgna M, Russo C, Kundi M, Zegura B, Novak M, Filipic M, Misik M, Knasmueller S, de Alda ML et al (2016) Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environ Pollut 219:275–287

    Article  CAS  Google Scholar 

  • ISO 20665 (2008) Water quality-determination of chronic toxicity to Ceriodaphnia dubia in 7 days-population growth inhibition test. International Organization for Standardization, Geneva

    Google Scholar 

  • Jackson MA, Stack HF, Waters MD (1996) Genetic activity profiles of anticancer drugs. Mutat Res 355:171–208

    Article  Google Scholar 

  • Jenkins GJS, Zair Z, Johnson GE, Doak SH (2010) Genotoxic thresholds, DNA repair, and susceptibility in human populations. Toxicology 278:305–310

    Article  CAS  Google Scholar 

  • Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    Article  CAS  Google Scholar 

  • Kosjek T, Heath E (2011) Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC Trends Anal Chem 30:1065–1087

    Article  CAS  Google Scholar 

  • Kovacs R, Csenki Z, Bakos K, Urbanyi B, Horvath Ă, Garaj-Vrhovac V, Gajski G, Geric M, Negreira N, Lopez de Alda M et al (2015) Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study. Water Res 77:201–212

    Article  CAS  Google Scholar 

  • Kovacs R, Bakos K, Urbanyi B, Kovesi J, Gazsi G, Csepeli A et al (2016) Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish. Environ Sci Pollut Res 23:14715–14729

    Article  CAS  Google Scholar 

  • Kummerer K (2009) The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J Environ Manag 90:2354–2366

    Article  CAS  Google Scholar 

  • Kummerer K, Haiss A, Schuster A, Hein A, Ebert I (2014) Antineoplastic compounds in the environment-substances of special concern. Environ Sci Pollut Res Int 23:14791–14804

    Article  CAS  Google Scholar 

  • Kuster A, Adler N (2014) Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philos Trans R Soc Lond Ser B Biol Sci 369:20130571

    Article  CAS  Google Scholar 

  • Lin AY, Lin YC, Lee WN (2014) Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments. Environ Pollut 187:170–181

    Article  CAS  Google Scholar 

  • Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  CAS  Google Scholar 

  • Mahnik SN, Rizovski B, Fuerhacker M, Mader RM (2004) Determination of 5-fluorouracil in hospital effluents. Anal Bioanal Chem 380:31–35

    Article  CAS  Google Scholar 

  • Martin J, Camacho-Munoz D, Santos JL, Aparicio I, Alonso E (2011) Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography-triple-quadrupole mass spectrometry. J Sep Sci 34:3166–3177

    Article  CAS  Google Scholar 

  • Negreira N, Lopez de Alda M, Barcelo D (2013) On-line solid phase extraction-liquid chromatography-tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J Chromatogr A 1280:64–74

    Article  CAS  Google Scholar 

  • OECD TG 201 (2011) Freshwater alga and cyanobacteria, growth inhibition test. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD TG 202 (2004) Daphnia sp., acute immobilization test. Organization for Economic Co-operation and Development, Paris

    Book  Google Scholar 

  • OECD TG 203 (1992) Fish, acute toxicity test. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD TG 210 (2013) Fish, early-life stage toxicity test. Organization for Economic Cooperation and Development, Paris

    Book  Google Scholar 

  • OECD TG 211 (2008) Daphnia magna reproduction test. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD TG 236 (2013) Fish embryo acute toxicity (FET) test. Organization for Economic Cooperation and Development, Paris

    Book  Google Scholar 

  • Olalla A, Negreira N, Lopez de Alda M, Barcelo D, Valcarcel Y (2018) A case study to identify priority cytostatic contaminants in hospital effluents. Chemosphere 190:417–430

    Article  CAS  Google Scholar 

  • Parrella A, Lavorgna M, Criscuolo E, Russo C, Fiumano V, Isidori M (2014) Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. Chemosphere 115:59–66

    Article  CAS  Google Scholar 

  • Parrella A, Lavorgna M, Criscuolo E, Russo C, Isidori M (2015) Eco-genotoxicity of six anticancer drugs using comet assay in daphnids. J Hazard Mater 286:573–580

    Article  CAS  Google Scholar 

  • Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8:82–95

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Weinberg HS (2010) Meeting report: pharmaceuticals in water e an interdisciplinary approach to a public health challenge. Environ Health Perspect 118:1016–1020

    Article  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in-vitro and in-vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  • Toolaram AP, Kummerer K, Schneider M (2014) Environmental risk assessment of anti-cancer drugs and their transformation products: a focus on their genotoxicity characterization-state of knowledge and short comings. Mutat Res Rev Mutat Res 760:18–35

    Article  CAS  Google Scholar 

  • US EPA (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th edn. EPA-600-4-90. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Usawanuwat J, Boontanon N, Boontanon SK (2014) Analysis of three anticancer drugs (5-fluorouracil, cyclophosphamide and hydroxyurea) in water samples by HPLC-MS/MS. Int J Adv Agric Environ Eng 1:2349–1523

    Google Scholar 

  • Zhang J, Chang VW, Giannis A, Wang JY (2013) Removal of cytostatic drugs from aquatic environment: a review. Sci Total Environ 445–446:281–298

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metka Filipič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filipič, M., Novak, M., Žegura, B. (2020). Genotoxicity of the Residues of Anticancer Drugs: A Hazard for Aquatic Environment. In: Heath, E., Isidori, M., Kosjek, T., Filipič, M. (eds) Fate and Effects of Anticancer Drugs in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21048-9_16

Download citation

Publish with us

Policies and ethics