Skip to main content

Atlas-Based Automated Detection of Swim Bladder in Medaka Embryo

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11564))

Abstract

Fish embryo models are increasingly being used both for the assessment of chemicals efficacy and potential toxicity. This article proposes a methodology to automatically detect the swim bladder on 2D images of medaka fish embryos seen either in dorsal view or in lateral view. After embryo segmentation and for each studied orientation, the method builds an atlas of a healthy embryo. This atlas is then used to define the region of interest and to guide the swim bladder segmentation with a discrete globally optimal active contour. Descriptors are subsequently designed from this segmentation. An automated random forest classifier is built from these descriptors in order to classify embryos with and without a swim bladder. The proposed method is assessed on a dataset of 261 images, containing 202 embryos with a swim bladder (where 196 are in dorsal view and 6 are in lateral view) and 59 with-out (where 43 are in dorsal view and 16 are in lateral view). We obtain an average precision rate of 95% in the total dataset following 5-fold cross-validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ali, S., Aalders, J., Richardson, M.K.: Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development. Zebrafish 11(2), 129–141 (2014)

    Article  Google Scholar 

  2. Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23(1), 67–86 (2005)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. Bryson-Richardson, R.J., et al.: Fishnet: an online database of zebrafish anatomy. BMC Biol. 5(1), 34 (2007)

    Article  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  6. Embry, M.R., et al.: The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat. Toxicol. 97(2), 79–87 (2010)

    Article  Google Scholar 

  7. Genest, D., Puybareau, E., Léonard, M., Cousty, J., De Crozé, N., Talbot, H.: High throughput automated detection of axial malformations in medaka embryo. Comput. Biol. Med. 105, 157–168 (2019)

    Article  Google Scholar 

  8. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  9. Iwamatsu, T.: Stages of normal development in the medaka oryzias latipes. Mech. Dev. 121(7–8), 605–618 (2004)

    Article  Google Scholar 

  10. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2(1), 18–21 (1973)

    Article  Google Scholar 

  11. Kinoshita, M., Murata, K., Naruse, K., Tanaka, M.: Medaka: Biology, Management, and Experimental Protocols. Wiley, Ames (2009)

    Book  Google Scholar 

  12. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  13. Klein, S., Van Der Heide, U.A., Lips, I.M., Van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407–1417 (2008)

    Article  Google Scholar 

  14. Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recogn. 32(1), 129–149 (1999)

    Article  Google Scholar 

  15. Lovely, C.B., Fernandes, Y., Eberhart, J.K.: Fishing for fetal alcohol spectrum disorders: zebrafish as a model for ethanol teratogenesis. Zebrafish 13(5), 391–398 (2016)

    Article  Google Scholar 

  16. Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proc. IEEE 91(10), 1699–1722 (2003)

    Article  Google Scholar 

  17. Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22(1), 120–128 (2003)

    Article  Google Scholar 

  18. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley, London (2013)

    Book  Google Scholar 

  19. Narayanan, R., et al.: Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy. Phys. Med. Biol. 53(20), N397 (2008)

    Article  Google Scholar 

  20. Puybareau, É., Genest, D., Barbeau, E., Léonard, M., Talbot, H.: An automated assay for the assessment of cardiac arrest in fish embryo. Comput. Biol. Med. 81, 32–44 (2017)

    Article  Google Scholar 

  21. Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  22. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., Orlando (1983)

    Google Scholar 

  23. Strähle, U., et al.: Zebrafish embryos as an alternative to animal experiments a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33(2), 128–132 (2012)

    Article  Google Scholar 

  24. Sun, C., Pallottino, S.: Circular shortest path in images. Pattern Recogn. 36(3), 709–719 (2003)

    Article  Google Scholar 

  25. Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9(12), 2083–2099 (2000)

    Article  Google Scholar 

  26. Union, E.: Directive 2010/63/EU of the European parliament and of the council of 22 september 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 276, 33–79 (2010)

    Google Scholar 

  27. Yamashita, A., Inada, H., Chihara, K., Yamada, T., Deguchi, J., Funabashi, H.: Improvement of the evaluation method for teratogenicity using zebrafish embryos. J. Toxicol. Sci. 39(3), 453–464 (2014)

    Article  Google Scholar 

  28. Yang, X., et al.: Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total Environ. 643, 559–568 (2018)

    Article  Google Scholar 

  29. Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Genest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Genest, D., Léonard, M., Cousty, J., de Crozé, N., Talbot, H. (2019). Atlas-Based Automated Detection of Swim Bladder in Medaka Embryo. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics